admin
Tue, 11/15/2022 - 17:26
Edited Text
•
J O S E P H S C H I L L I N G E R
•
C O R R E S P O N D E N C E C O U R S E
Subject: Mus,ic
With: Dr. Jerome Gross
Lesson CXXX.
MELODIZATION OF HARMONY.
•
Composition of melody W?-th harmonic ?�coru
pan���pt can be accomplished either by correlating the
•
melody with a chord progression or by composing the
melody to such a progression.
While the tirst �rocedure
is more commonly known, and attempts have been made
even to develop a theory to thls effect, the second
procedure has brought forth music of unsurpassed
harmonic expressiveness ,.
Many composers, particularly
the operatic ones (and among them Wagner) indulged in
composing the melodic parts to harmonic progressions.
So far as this theory is concerned, .the
technique of harmonization of melody can only be
developed if the opposite is known.
If melody can be
expressed in t�rms of harmony, i.e. as a sequence of
chordal functions and their tension, then a scientific
and universal metl1od for the harmonizaticn of melody
can be formulated by reversal of the system of operations.
The process of composing melody to chord
progressio11s thus becomes tl'1e melodiza_tion of 11.§1.rmony.
"
0
0
2.
Though such a word cannot be found in the English
\ dictionaries of today, we can be certain it will be
there very soon , as the discovery of a new technique
necessitates the introduction of a new operational
concept.
This �heog of Melodization will be applied
$
•
to harmonic progressions satisfy ing the definition of
•
•
the Sp�cial Tl1eon: of J-Iarmony:.
•
According to this
definition all chord-structures are based on E, of the
names
seven-unit scales contai ning seven musiGal
. without
'-
identical intonations.
Thus any pitch unit of melody
can only be one of the seven functions: 1, 3, 5, 7, 9,
11, 13.
C
These seven functions produce the man ifold
which we call the scale of tension.
By arrangi ng the
scale of tension in a circular fashion, we obtain two
harmonic directions: the clockwise and the counterclockwise.
•
Clockwise functioning of the consecutive
pitch-units of a melo�y neces§�tat�s the p9si�ive
•
..
0
0
3.
form of =tonal cycles.
= •
r
Counterclockwise functioning of the
pitch-units of a mel99¥ necessitates
consecutive
-
the negativ.e form of ,tonal 9ycles ..
Assuming that all pitch-units of a
melody are _stationag and_ identi.cal, and therefore
.•
-
could be any pitch-unit that is stationary, we shall
By assigning the clockwise
choose c as such a unit.
functioning to such a unit, we obtain the positive
form of harmonic progressions.
Melody:
Chords:
1
3
5
7
9
11
13
1
c + c + c + c + c + c+ c + c
C + A+ F + D + B + G + E + C
By reading the above progression backwards,
we obtain the negative form.
Omission of certain chordal functions for
the consecutive pitch-units of the melody will result
in the change of cycles but not of the direction.
Melody:
Chords:
Likewise:
Melody:
C
Chords:
1
C
+
5·
9
C + C
+
13
3
7
C + C + C
11
1
+ C+ C
C + F + B + E + A +D + G + C
➔
l
7
13
C + C + C
5
+C
11
3
9
1
+ C + C + C +C
C + D + E + F + G + A + B + C
Cs-
c,
0
0
It follows from the above reasoning that
every �hord has seven for�s of melodiz?tion, as
1, 3, 5, 7, 9, 11 or 13 can be, added to it.
The reduction of the scale of tension
decreases this quantity respectively.
We shall consider all the reduced forms
.
•
of the scale of tension to be the ranges of tension .
When each chord is melodized by one attack (or one
pitch-unit) the range of tension can be entirely
under control.
The minimum range of tension possible
can be acquired by assigning only one chordal function
to appear in the melody.
Let us assume that such a
function is the root-tone of the chord.
Then if
harmony consists of three parts, melody will sound
like the bass of progressions of 8(5) const.
For example:
Melody:
Chords:
2c1
+
c,
2c 7
c + f + b + g + c + d + e + • • •
C + F + B + G + C + D + E + • • •
Figure I.
•
C
+ Cr +
0
0
•
5.
C
It is easy to see that the pattern of
•
melody in such a case is conditioned by the cycles
through which the chords move.
The predominance of
c7 produces scalewise steps or leaps of the seventh.
Other cycles influence the melodic pattern accordingly.
Now, if we assign any other chordal
.
•
•
function (still one for the entire progression) , the
resulting melodic pattern does not change, but the
form of tension does.•
This time we shall take the seven th to
melodize the same chord progression.
Figure ):I._
,.,
•
-•
1
•
1
•
-------•
The different ranges of tension produce
different types (styles) of melodization.
Music
progresses cloc kwise through the scale of tension.
A narrow range, confined to lower
functions produces more archaic or more conservative
C
styles.
The resulting melodization may suggest Haydn
0
0
6.
or other early forms (in wost cases sueh styles
later become trivial) .
Whereas a narrow range
confined to higher furictions results in melodization
suggesting stylistically Debussy or Ravel.
The
intermediate form may produce Wagner, Frank, Delius.
Wrien the entire scale is used as a range of tension,
the resulting melodization becomes highly flexible
in its expression.
•
•
•
'
•
•
•
C
0
0
•
7.
C
Lesson CXXXI.
•
I. Diatonic Melodization
As it follows from the preceding exposi
tion, any chordal function can partici�ate in melo
dization.
The only necessary step which follows is
the assignment
of chordal functions for melodization
•
•
•
with regard to actual chord-structures.
-- as H.
We shall express melody as Mand harmony
In terms of attacks, one pitch-unit
M
assigned for melodization of one chord_' becomes H = 1 .
Under such conditions it is possible theoretically to
u
evolve seven forms of melodization.
For example, a C- chord can be melodized
by c (l) , e (3) , g (5), b (7) , d (9) , f (ll) and a (13).
Figure III.
•
•
•
•
•
.. .
I
0
-
0
0
•
a.
It is easy to see that the majority of
pitch-units of M are satisfactory.
Two of them
(d and f), however, do not result in a satisfactory
melodization.
The reason for the latter is that -
high functions, without the support by the
immediately preceding function in harmony, are not
acceptable .
.
•
Likewise, the presence of lower
functions in the melodization of high-tension cl:1ords
•
•
satisfactory
The 13 is fully
'
is equally inacceptable.
as melodization of 8(5) because by sonority it
converts an 8(5) into 8(7) .
Now we can construct tbe table of
L
melodization for the fifth voice above four-part·
harmony, where both melody and harmony are diatonic.
•
Figure IV.
Table I:
M
7, 13
5
1
s
S(5)
9, 13X)
.
I'=
1.
5, 11, 13
5, 13
5, 11
5, 9
13
7
9
11
13
5
7
9
9
11
3
7
7
7
1
1
1
1
8(7)
8(9)
S(ll)
3
1
S(l3)
.
•
•
0
0
9.
It follows from the above table that:
(1) classical and hybrid four-part harmony can be
used for the diatonic melodization;
(2) all chordal tones actually participating in the
chord as well a s the functions designated as M
can be used for the diatonic ruelodization;
•
•
•
(3) by diatonic melodization we shall mean the
participation of pitch units of one diatonic
scale and fnom which the chord-progression is
evolved;
(4) the use of 13 in 8(7) is acceptable when the root
of the chord is in th e-bass (i.e. do not use
inversions);
(5) the alternative in selection of functions for the
melodization of 8(13) is due to t\vo forms of
structures covered by the branch of hybrid four
part harmony.
Assuming that there are on the average
•
about five practical pitch-units (functions) for the
melodization of each chord through the form
M=1
,
H
the number of possible melodizations of one harmonic
cor1tinuit·y (under such conditions) equals 5 to the
power, the exponent of which represents the number of
chords.
Thus a progression consisting of 8 chords
produces 5
L)
B
= 390,625 melodizations.
•
•
0
0
10.
The two fundamental factors in deter
mining the quality and the character of melodization
are:
(a) the range of tension;
(b) the melodic pattern (i.e. the axial
combination of melodic structure)
The int -erest may be concentrated on
either one or on both.
Attack-interference patterns
add interest to melodization.
•
In the following examples�' R represents
the range of tension, A -- the axial combination.
All the following examples can be played in any
•
system of accidentals •
Figure V..
Examples of Diatonic Melodization
M iI
-
1
(please see following pages)
,
L
'
0
0
(Fig. V)
•
., .
,
:,
,
,,
..
-
.,.
I
...�
.
�.r
-e
•
,
LI
I
I
•
t
.
-
,
-
•
�
l:
•
-.,,.
•
•
-
..•
I
•
LI
•
c::
-
I
,
-
I
•
1..
-
"d'
•
�
�
-
I
.
..,
•
•
. .•
�
�
·7
I
•
·-
. ....
.
�
II
-
.
I
�
-et
..
♦
0
J·
-
�
I
•
•
r
�
•
I
-- -.
�
..
•
7
�
,
•
�
>I
•
'•
'•
1 .�.
·o
-� . ..
.
••
..,,
�
•
•
(J
•
. ..
••
•
R.� ➔ ..:. !'; A : a.,
•
•
-
•
•
•
.. ,
•
•
-
0
0
0
12.
(Fig. V, cont.)
R�
'
i -,�-
A:
•
QJ-t-�
.
•
.
1:,
t -11·J
.,.
":. 1
I'
A : Jr-tw,
·
•
•
•
..
•
•
•
;,,,..-.. •.
•
.t��:-,
- .":
Jl.lt(�Ry �-�'-'.. ..- .. .
9,�
-11.
. "'
•
'
•
u
•
•
•
•
,
•
I'
•
'
I
•
•
,,,. •
•
•
•
-
'.
•
0
0
13.
u
Les.son CXXXII.
The increase of the number of attacks
necessitates a slight remodeling of Table I (Fig. IV).
Any higher funct_ion can be supported. by the
,immediately 12receding function of immediately:
preq_edi:ng rank.
For instance, 9 can be used for melodi-
••
zation of 8(5) providing it is immediately preceded
by 7, and the root of 8(5) is in the bass (the
•
necessary condition for the support o� 9).
same reason 11 can be used for
For the
melodization of
8(7) if preceded by 9 and when 8(7) has a root in the
bass.
Figure VI.
•
Table II:
M
H
-
2, 3, 4, • • •
Additions to Table I:
7
➔9
9� 11
5
7
5
3
3
1
1
8(5)
8(7)
.
0
0
14.
•
Fig�e VII.
Examples of Diatonic Melodization.
M
2
If
i
I
'J
,
3
ll"'"r-41..,__-,---+--- ....-.--..__...__
,l
•
r ��
5
'I t?i 'I '
'i
'1 I
,_
.......---.�--
-' ...
•
. '•
•
•
r
As a.,
7
'l . ..,..
�
•
•
e
s· 7
.-
•�
•
...
l "'
,
I
5 t l Il
,r
.
7
.....+
..
� ..
•
•
,,.
...
�-
l
:it··.. .,,,
(cont, on next page)
L
1
J
--+--+--,...---,j�-- r--,-.�-t--t--r-,--..r--n-
. )
•
1-�
•
I
,.
..
'
1
J ,I
•
I
•
A:
-t 3
,
7
4
•
•
,.
.J.-
..,
·-
T
0
0
15.
u
(Fig. VII, cont.)
-
-
•
.... p
'.
..
l
I
.
.,.
.. .
�
I e,
I
•
•
I
•
-_,
I,,
-
.�
t
II
I
-·...
-
...
... '
'
•
I •►
•
!
j
I
•
•
• ••
-
!
•
.., '
•
.
'�
II
+·
�
__
•
•
'
•
.
II
-··
'-
1
I,,
�
I
•
-,::.
'
(
•
•
I
r-
!
•
•
z:
•
•
..
J
-•
' .,.
...
�
�
,
••
.,.
-l
I
I I
II
.
•
'► •
I
'I,,
,..
t +-�
.¥
....r..
I
•
!
.,.
!
,
.. ..'►
...
•
....
.,,.
'
I
I
•
I.
I
-
..
• •
-·
•
;� ·c:
'�
;:
!:
. .,.:
�;
.
-
..
.
I
� -
I
I
•
I \
f
\
•
With the further growth of the quantity
of attacks of
I,
greater allov,ances (particularly
in the fast tempi) can be made ..
This particularly
concerns the use of unsuitable functions for melodi
0
=
..4-
:
.
I
""
zation, when such functions are used as auxiliary tones
i:
0
0
16.
mov_ing int9 chordal tones, actually present in the
harmonic accompaniment.
Such styles of melodization
(particularly in the harmonic minor) can be easily
associated with Mozart, Chopin, Schumann, Chaikovsky
and Scriabine, i.e. with the sentimental, romantic
lyrical type.
•
Figur e VIII •
Examples of Diatonic Melodization.
M ii
•
C
I
]
J
'·'
"
8.
•
•
•
•
I
d
,:;;;,
'
.
-
:@,
••
t,
*·
.
•
•
•
(
.•.,,..
.
3
•
.
j
'
,,
I·
.
•
-6t.
-=IF.
'
•
•
••
•
•
r ,.
•
•
t7'
-p:
r•
-tr'
I
(oont. on following pages)
c.
•
•
•
•
-Ir.
..
'
"".
I
I
=f
�-
0
0
•
r
Q
•
..
j
�
.
'I..
"
. • :g
1,1
'
�·
'
ti
---
-
�
•
1z •
l'• -
'
•
:J
=
"
t
"
....r
r.
C
:I
?• '
c, ••
�
•
� •- -
_.II
. ..J
,
.. •
]
•
r
�
•
--
_. •
--.
R � a;
'.t:SlC
'
.
..
�
■I
.,_ -
=-
-=.
�
.
c::. �
'
'.
.:_
�
C
��
·�-
'
.I.
J
,_
-!'""9
�__¥:,
{I'
-
'
,r
.
•
"'"'
�
+-
.
'-
�
..
.
.,,..
A
•
.
A -
,.__
�
J
�
�
,-
.,..
�
�
';;I_
,,.
...
'1.•
a;+t
�
�
•
� ��
�
!
+
�
..
•
•�
r� r
.
=--=-·
•
•
.
.Q ..
,....
•
-�-r-
I
'
0
0
B 1/l{RR
-
'f..E.S
PAR�LLEL
t
.
-
-
I
.,,.
�-- +-
•
-
• •
!:
t
- f'l
.,
]
!�
,_ •
•
t
•
•
18.
•
J
•
- ]
-
-�
- •-- -
•
I�
.0
■..I.,
I
•
-
•
•
•
I
�R:
..: ..L
.
.
•
•
J
,.
•
•....
•
J
•..
•
""'
- --- •-
I
j
... ...
�
t
•
'
- .....
�
I
.,,.
---
• ,---
�
-•
•
'
•
••"'"
'
,.
i,. ·-
•
'
.
--
.... .- ..
I
...
•t ... t
�
�-
I
-
�
�-
'--c
•
,
1wo- �,.."f"�U. ?R.,--'f"ER.�
-
•
�
t
J
�I
c·
-
: ,.
-
'
•
-
•
t
1
I
I
i
I
•,..
I
l
•
I
.L
I
I
I
-•
�
.
I
I
•
•
I
-.. .il
... ••
�
•
I
•
+-
•""
•
•
•
I
-
•
•
+
I
I
.
0
0
•••
I?I kitI
C
•
•
19
•
•
...
•
-.. ...
...
-
•'
- - ...
:
••�
-·...,
•
I
I
'
..
•
•
I
I
•
I
�
,;
.·
:t=-·
.
•
I
•
Examples h'f n1awn1c Me1oa:1zat1on
•
I
�
-
•
I�
I
-
,..I
.
■I
..
.. .-
-1►
,.
-
'•
.,.
'I
J
,..
-
I/�-
.
/?
-
'·
...,
•
"
-
'
,-y
--
.+
t.
.I
,I
••
•
"'
a..,
"'
'--�- :...
=
•
••
-:e:-
-
jg
-
---
..-
,.
+
j
L
c;.1
.,_,..
.
-
•
-
,-y
-e- '
-8-
0
$
....
--
-
-
.,,.
�
,.,
-
I
•
•
0
-
r-Y
...
•
-
J
,�
r
'I
t
11
V
..
-
•...
•
• +·
•- ·►
.
r,I
••
... •
•
.
-
�
. .,,.
t:
-
-
,.,..
....,.
H = 4
-
Y-
·o
()
,
..
'
'
! I•
•
-
·-�-.
• ...:
...
'
f
-..g.
....
I:,
.
•
•
()
�
...
- ·.. .- ...
.
... • ... ....
'
"
.,.
-
•
..
-
•
--
•
�
•
,,.....
•►
-
�-e-
-�
0
0
" ::: Jr
• _:t: L '._ •
I I
I I I
....
.
.
L.
'
I
(
•
I
•
,�,
J
'
:
f
�
-
.. .· ·-•
• ••
.
.
I
•
•
-
•
.
.. -- .,.
•..
• ••
J
-
•
�.
•
T
I
c-
�
20
•
,.,
0
•
.
·:,
-
I
�
.
ij
'"
,�
•
-
.
•
L
..
•
i.. • I
•'.
.. ....
"' .- ..::. +-�
•
,►
I
.,
.
-"
I
I
.
•
•
..
!
..
.� .
.g,. ,.,,.
¾, -8-
I
I
0
0
21.
L
(Fig. IX, cont. )
-
.. ..... '-,
.. .....
:
.A
•
•
.. -
E$
... L ,.
•►
�
,1-
l
It
I AR.
►
'
'- ■- -
I
•J
........
•�
•
I
...
...-+
'
•
•
I
•
'
•
�
....
,,
t
...
111.
�
•. I
�
'
► I!.
....
,,-
-
,
•
-
•
•
_
•
•
.
..
A1'"""'R
-
...
I
I
I
. '�
-,
I
I
_j
�
•.
I
..L '
•
iiH-RE:E -
'
�
•
•
,_ . ... ...
.., .. +
•..
-::J;:1-I
.
. r
•
.
• ••·
I
...... ..... ...► ·-..•..
•
'
I
I
.. -..
•
'•
•
-•
.
'
1:..
..:·......
+
.t
I
..
l
-
'
,
..
I
I
,_
-·
•e..
L
I
.
•
t
;•
• · ' lf
•
.....
.....
.....
•
•
I
,_�
J
'
�
,i I
,
..•
I4
•
'
•
I
•
..
•
J
•
-
1
-
•
f
•
�
I
.
I
-
-
--·•...
!
•
•
•
7'��
•
I
.
•
4- ,...
•
•
..
.
•
L.!
,.
... ...
•
--
0
0
22.
Lesson CXXXIII.
Fig:ur e X.
Examples of Diatonic Melodization.
-MH
.
•
llfAit
I
•
"
.....
(
I
•
I
•••·6
r. "'
.
I
•
5.
•
r I
'
•
-
f
·- -
,'
•
I
,
,.
•
.
�
•
ct
�
]
•
-
�
•
[
ri
.. ' '"
..
•
•
•
•
t
,_
1•
.
. .
(.:,• � . ....�t'
.
-t
�
.
,i
•
..
.
•
�
I
.
•
•
•
..,. l'I',
''I,'";t;-'
.
..-�
,
C .J
l
...• .,. .l
�-·
'
•
•
�• • •
... t-.....�. · . ··...�
---�
=
..... . -
....I,..
-
•
•• •
�
�
•
••
.. .,..
.
,
'.I
l'
�
I
-:
-6-
.e,
(cont. on following pages)
L
/
0
0
I
.,
'..
.,5
.
i, ,
�c:.::
��,P•',
--.ll'.l•�
IV
"
r .. ,_
•
.,,,,
'"" I'i
-e
., ��.:-�
"-'• I..._1!1'
- ' ,_,
•
'
'J ..
-
�
'
t
•
]
,�
II
t�
II
I
'
I
♦Jf!
-
�--
-
..t._'.: .,..
I
I
-
- ..- -
�
I
•.. I
•
..
�-
•
'
-- -. ~-
-+
'
... ...
..
-,,.
- - .-·
'
-�.
• •...
I
!
---
r:,
�
�
-�
;.l"'r&
I�
I •_ .,.
0
-:!:
..
'
-· ·
--�
�
-
-·'..-� •
-
-�
•
-
j
.
.
'�
- •..-
'
•�..!.-►
-
j
••
:
...:.:1:.
� '
.....
I
I
--
"3'
�
-
t .,.
•........ ..
!.
'
.....
:'�
:5'
·-- j
'
J
J
•
.
•
::
i:
.....
,, •
I
- - -"
...
..
""!>r.,::;r-
I!
•
• t......
•
"
--
�
I.J'
�
.,.
!. �
,.
-
�
I
,1
-s
+
r
..., s
-�
-'
•
23.
•
I
I
•
..
' ••
·-·
!
'I
-
.
•,.
.
•
•
•
-
-
',
•
I
�
�j
::-no
••
•r"
::..1-Jt
·-
•
'LJI'
I
•
Y.
I
..
...-
..- -
'� ' I
I
-
]
- •►-
..
;.,,
•
I
I
.. �-
-
0
0
'•
I']
•
I
'
,
,,
.
!::
'
!�•
•
E
-
I
•
•
•
•
I
'._
It
--
•
I
I
I
I
J
\
•
I
I
Fi g,urEt XI,
•
I
I
II
I
I
t
!
.
:i
•
..
I
I
[
•
j
�
24 •
1
I
I
- 6
I
Compare the following illustrati ons with Chopin, when playing in
C - minor .
-
I
..
•
�A
-�
I
I
-·
-
-r -
·�
I
'
,.
I
'
I
"'
•
.
...--.-
r_.,
,_
-5
.
!!!!:
-
'
r •
• •
'
.
-e• .
r
.
...
'
'
--
�
-
Sii
...
1• •
I
: . -•-·•
.. .
.
�-
.
1·
I
�
�
• •
�!.•119
'
•
• •
•
I
-
•
-e,
•
...
•
-
z
-
[
.
V
I
-
-
--
•
..
....
..
::;;. •
---
T
'--
j:::J
-.- .
+·
•
•
]
�
--.
•
--.
'
. -r
•
"' •
'-
rl
' •
�
r
,•
•
�
•
-- . .
of;- .
I •
.
... '
.:. .,-
•:= t
[
-
-
-el
.,_
•
I
'I
--
-
I
.
•
[
'
iiiii
--
�
+I
C•
�"7
•
I
'
•
e:xamples or n1aton10 Mel adizatlco.
'A
L
.
(
'
I
(Fig. X, cont.)
.•.. -- ...
◄
•
[
�
I
•
.
�
-
,
�
•
-
I
r
'
�•
I
• $i
•
••
�----
!
, ..,,
-·
' .,
(J
:t-
,,-,•.
.
-
;j·,
•
��
•
..
•
.
0
0
-
r
i
•
.
-t.
-
;
•
�
•
-'►
.
-
I
-
--- ,f;iili
.,,.
•
� .:t:
�
�
-► �
- ..
'-:•"" '.
.•
�
.. .......
•
•
•
•
'
•
'
!
�
.
•
....
•
..
�
..:
'
..... ....•
a
•
'
'
•
•
:Si
25 •
...
- .. •
••
'
~
,...
-
..
z
�
'T
.
•
4-
�,
•
.
.
••
.
◄
- ••
,___ .,.
I:
•
e
,..
'
'{
'
!iii1
•
...
'
.,. .L
..
•
•'� I'.
�±
�•
- ..e.
..,._
p
'�-
-
•
•
•
it�,iRf l.OtJtJ�R.�\lt; - !)IVi:.R.�lt-1�
.... '... .L.
'
''
,
••
I
••
..
L
Il'C
\•
'
,
I• .
''
-
�
/r
-
�·I
.. i• .l
•
:s.
I
I
J
-
"
l
-
I
•
I
!
-I.. - •
!
,
,.
,
•
I
�
I
I
.
.. .--.
...
,·
-,
T
I
•
)'--
I
I
.--
... .....
-
i
1
•
•
.
'
..
•
[iii"
Ill
-� ·
-
1
•J
'
•
'-
1
1
-
.t.. ... .
..
I
-
.:.
•
..•-·
•
-.. .·..._ __ ,...
� -�
---
I
JH
I
'""
-
'
i--.
-
'
...."" '..
�1'�$
,
•
•
..
'
0
0
-
Fi@!'e XII.
Examples of Diatonic .Melodiza'tion .
I
�
•
�
•
...
�
•
.
.
e
-
V
•
....... '"' ... ,.
•
.,. •
;
•...
'
•
•
..1 r,.
.
•
·-•
-
.
--
�
-
•
. , +· •· ..,.
• .,
.
'J
�
-
"
;:
,.
•
•
• I',
•
•
',
.
,,
II -,
,.
•
!
.
II
•
.
.
�
·i
•
.
I
•
.
...
•...
j •
. .
..
•
�
.
....!..
..
f
•
'
•
•
•
��
I I
•a,.
�
,
-
•
0
.
,.,
..
.,.
•
I
•
•
r-
!. . )
•
=F
I
-:::s .
�
..
L'...
7
;.
...-
+
I
.
-
.
•
-
•
jI
'
.
.
';.�
•
�
'
-
• •
. '
�
.
-fl- •
.
-
. .'-
.'"" .
+
•
.
•
-·
r
!
•
•�
..
-�
..
...
JJ
..,_"
.
:•
•••..:..
---
'
"
. ...
.
,
.
-
.
.
'
.
••
•
I
-
....
•
.
,
... I
---�
•
'
()
. '..
•
.
'== -
I.J
--
!
-
. .,
�
•
.
.
'
-
... .. . ....
•
.
\
•
'-
.
.
"7
LJ
.
•
�
�
'
'\ I•
�
�
',
I
'
.
rI
.
,.�
-'
•
.
'
r>
0I -
'
•
r'
- l '!l 1 (f
.
.
-
•
j
--
�;
L
•.,
..
26.
•
-
•
F�
,.
..
... •
•
.
.
-
I/
•
7
H
.
•
1'1.
M
•
•
!
+
•
..
77
II
.
..
• •► .•
•I
•
-
!
.
�
•
•
0
0
-·
,
• •
-
•
•&
II
....• .!--. -:-----�
•
(Fig. XII,
.,.
,
'
..
--
-
-
•
'n-
,
•"
co11t .)
,
"'
•
27.
•
•
L.
-
I�
-A
.
•
"·
.
... ...I ....
•
•..
�
w
J
-
,. ' •
" .
.
-
",
.
It,-'
..•
•
!
J
I
r
i
,a. •
- ... .-- ..
I'
•ioo
•
loo
'""
. .e..
• .,""
- •:
•
•
► I
-
I
I
�
'
•
•
•
'�
'
�
'
�
,
e
•
-•
,
....
••
J
'
.
.
5l
-
,,
-M --
4 ''"".
\i
r:,
'la
..... •
G
"'
l
•
•
.
,I ,.
'
,
-
•
.
•
.
•
j
.
�
•
•
-
.
•
.
.
V
.
..
•
�
-
-
,
-
.
• ...,,
�
..,
"
..
-�
!
-
1
1.
'
;,
-
'
I
Q
•
?, •
,
.,,
•
•
'
I••I
•
I
•
jjiil
�
.
I'
,�
I
-
£§ _
... . .:..
•
•
r
"""-Ir
.
.
I
rI
•
.
.
ai1d
•
,
�
..••• ••..- ••-.. ·-
.
.
""'
[J
,I
•
8.
i'
.
-'
(
•
..
Iii
_,
.
H
llustrations.
.
..
skrres) wi th jaiz
-.
I
l,,,f"
'
f.
c·
series) in the following
• ....
•
''•
Examples of Diatonic Melodi zation.
•
.
_..
..
•.. --- -
Figure XIIi.
•
.
•
•
•
--
]
.
•
I
•
...
I
I
►
�
'
I!
f
..... .
.. .
'
I
'�
-•
L!:
!
:.i
..... .- .
...
'
]
�
..
•••loo
•
J
I
.,,. -
I
.
.
.
.
,
"
-
-
.....
.
•
.
·-
.
.
.
.
,
.
·c
I
•
-.
,
..)
.
••
•
�
-
0
0
·�
\..._
.
!
..•
•
•
--
n
J
-9
+
�
-
•
-
-
••
.
•�� --,...
"o
-- ..
I
•
-
-
.
-,r· -
.
•
''
-
.
-
:i -
.
-
�
•
-c
,
CJ
�
•
•
�
'-
.... -- ·
..
�
La-
'
-- ·-
•
'
.:_ ,...
•
•
,. II
.- .•
.....
•
•
--� .
•
.,.. '
I
• ••
•-I •.. •••·••
;it
•
'
-·•• =- ... •
-
-·
. .,.
L
I
•-
•
I
-.
'
•
•
.
iiiiii
-
'
-
.
,,,,. ' ""
'
--
'
.
--
.
-I
•
-
-e;-
-
--Ir
,
·i!
::&-
I,I
'
[
..
•
,
.
.
-
•
-
I .,._
.J
'
.J
•
--
I
-- I
r
llliii
-• '
•
'
•
•
'lJ
.,,.
r
s;;i
.,.
..
28 •
c
•
J-..
ii
.
!. .,..
!...
.
,I
.. -- -
�
-
•
•
t
-e,-
T.
J
-============================================::::================================
'
'
-
.
.
.
•
•
•
•
•
0
0
-•
..
I
I,
P6"
''1
•
�
,
iiiiii
'
•
,
•
.-
'
!•:....: .�i:.
ii!!
·='
.
... ....
•
•
'
•:
� �
�,
�'
...
"'" '►
•
'
•
•
.
I
·-
•
.�
..J
'
--
I
•�
I
l
-·-. -� ...
'•...
I
I•
'
... •
I
•
'
'
•L •
-� ...
'
I
- .-
•
I
'
I
.
-
[
"
•
-·- '
•�
-
:i
•
•
,·�
-•
II!!!
--
c.,
6
-
I
z
•
J!
I
•
!!.
-
I
I •..
-
.
'l
....
- ·-
f
'
•
I.
/'"l,
,•
-
I
- • ...
•
'
.
12
.
:-,
.
I.
I
-
'
-
l
'
I-
�
•
t
..........
i
,
•
-I
I
I
I
H
'
�
-
::g;'
-
!!.
I
M
I
•
•
-I ....
•
...._
le •
'
···-• l
'
•
'i•
-
'
•
•
:-ii
l
•
•
•
'-:
I
Examples of Diatonic Melodi'zation.
'.I
• IJ
•
r..,..,.II.
-
�I
I
l
..
Fi:e:cn·e XI'I·,
•
•
-
•
•
!
•
•I,
•
'
l►
.¥
-�.!.. .-
[
�
q
•l"r.
•
.
•
..
.
..
.
..
:�!:::
.
�
.
...
•
•
•
•
I
.
- .- .-
l
J
,
......
: ..·
..
••
!!ii
.- :1:.
I .
jjilllL,
'
•
J
I
'
�
!
I
•
I,
..
---
'
•
•
...
.
..... --.,:.,- I
•�
•
-
•
,
'
-
.,-
•
]
I.iii
'...
••
T'
' I
•
,
�
I .,..
I•
::::(
29 .
-
l
;_
��
�
I,
.
0
0
...
-
•
L
•
.
.
I
r-.
•
•
-
•
�
•
-
-... ..
•
�
.....
•
.
.•
•
..
•
�
I
f
-
..,_
-
-
'
•
..
-�
•
•...
..
�-
-
•
I ...
t
..J
�::!
'-'
.,.
.._
�.•
-
'
•
.'
�
�
-
.
.... • .... ::: .,.. .
-.
-
•
1S' I
-- ..
-
•
•
-
....
-rJ' .
�.
,
-I '
.
..
�
.
-
.
,
..
.
'
--·
\
.
�
�
,
.
.
......
•.,. I
-
+•
•
,�
•
•
7J
.
�
•• •
[
.
-..
-
.
'�
•
-
' -- .
••
·o
•
�
•
•
,,
"
a,.
•
i!!
-�
I')
•
'
,,
,
.,
�
,
.
..
. .,.
--er.
-- -
I
•
..
-
e.
• �·
·�·
•
..
•
ii!l •
�-
.
I •
I
.- •
.
-:er .
--
-I? ..
�\
-
tlll!l!!. .
---
.
rJ'
,
I
!
••
�
30 •
•
'
,.
T
•
lii
-
•
,
'�
'
�
-.
f
'
..
-·..
..
'-' I
r11l
.
I1
I
J ""' •
·-
•
•
•
�
.
.
-•
-
t, '
•
.
•
-� •
'
.
'
0
0
J O S E P H
S C H I L L I N G E R
C O R R E S P O N D E N C E
C O U R S E
Subject : Music
With : Dr. Jerome Gross
Lesson CXXXIV.
Composition of the Attack-Groups
of Melody.
.
•
In all the previous forms of melodization,
the attack-group of M was constant.
Any assumed
quantity of attack per chord (H) was ca�ried out
consistently .
The monomial attack group (A) in all
cases was an integer remaining constant throughout
�.
L
This monomial form of an attack-group can be
f
as
expressed
'
one to infinity) .
= A, where A can be any integer (from
Now we arrive at binomial attack-groups
M expressed
be
can
This
.
for the melork•
as
�
2H .-
= A , + A 2 , i. e. melody covering two successive cl:1or ds
consists of two different ·attack-groups .
For insta11ce :
(1)
-! H -M
2a +. a ;
(3) . 2H = 5a + 3a;
.II
as :
. '.
.
(2)
-H
:H = 3a 1r 2a;
= a + 8a;
•
• • •
These expressions can be further deciphered
0
0
f
(1 )
= 2a + a;
(3)
=
The
(2 )
5a + 3a;
M + M
H ' R2
=
3a + 2a;
a + Ba; • • •
(4)
main significance of a b inomial attack
group is the introduction of contrast between the two
successive por tions of M.
The greater the c ontrast
required, the greater the difference between the two
number-values of a binomial .
This proposition can be
reversed into the following : the cont�ast between the
two terms o f a binomial decreases when �heir values
approach equality.
Thus,
than
M
2H
3a + 6a;
=
2H
2a + 6a;
2a + 6a is more contrasting than
3a + 6a is more contrasting than the least
c ontrasting 5a +. 6a .
obtain a monomial as :
that
= a + 6a is more contrasting
)(
With fur ther balancing we
M
M
+
H2
H,
M
1I - 6a .
=
6a + 6a which means
If permutation takes place in a binomial
attack-group, it results in the second order binomial
attack group.
•
For instance :
: = 4a + 2a;
H
this becomes :
4H
M =
MH,
in the course of H ) = 4H,
+M +
H2
MHa, +-�!H
'I
= 4a
•
+ 2a
+
2a + 4a.
0
0
•
3.
The above described method of binomial
attack-groups is true of any polynomials.
are sub ject to permutations •
Examples of trinomial attack-groups :
•
•
•
(1)
M
3H
(2)
M
3H
(3)
(4)
0
The latter
= 3a + 2a + a ;
14 + M + M = 3a + 2a + a ;
H2
Ha
If,
-
4a + a + 3a;
-HM ,
+ H2 + H3
a + 2a + 4a;
3H
-HM,
M
M
+ - + Ha · = a + 2a + 4a;
Ha
M
M
3H
=
M
M
-
4a + a + 3a;
M
M + 14 = 3a + 5a + 8a.
+
3a + 5a + 8 a ; H'
H2
H3
Examples of polynomial attack groups
based on the resultant.s of interference:
M _ M
6H - H,
M + M - 3a + a + 2 +
+ a
H,- H•
+
14
+ M
+
Hr
Ii.
= 2a + a + a + a + · a + a + 2a.
2a + a + 3a.
,
0
0
•
4.
(3)
r
9+8
M
16H
.•
Ba + a + 7a + 2a + 6a + 3a + 5a + 4a +
+ 4a + 5a + 3a + 6a + 2a + 7a + a + 8a .
The effect produced b y such composition
of attacks as ( 3) is that of counterbalancing the
original binomial: it starts with excessive animation
•
over H , (8a) and complete lack of it over Hz (a) ; it
f ollows into the state closest to b alance, after which
the counterbalancing begins, ultimatel� reaching its
converse:
a + 8a.
In all cases of ra +b the maximum
animation takes place at the beginning and at the
end.
When the opposite effect is desirable (minimum
animation at the beginning and at the end) use the
permutation of binomials (which is possible when the
number of terms in the polynomial is even) .
For instance: (3) can be transformed into
M = a + 8a + 2a + 7a + 3a + 6a + 4� + 5a + 5a +
16H
+ 4a + 6a + 3a + 7a + 2a + 8a + a .
In addition to resultants, involution ·
(power) groups as well as various series of variable
velocities (natural harmonic series, arithmetical and
geometrical progressions, summation series) can be
used as the forms of attack-gro ups.
•
0
0
For instance: ( 2 + 1) 2
:
( 1 + 3) 2
:
=
�
4
4a + 2a + 2a + a ;
:H =
a + 3a + 3a + 9a ;
•
2a + 3a + 5a + 8a + 13a .
For the time being we shall use the
simplest durati on-equivalents of attacks, as this
•
•
subject is a matter of further analytical investigation
(which will follow in the next lesson) ;
Figure xy.
Examples of Diatonic Melodization with
Variable Quantity of Attacks of M over H:
M
-
=
H
A var.
(please see following pages)
•
•
'
0
0
H
•
'
I
r•
�
•
liiii
•
•
•
...
'
Ao-
•
.e.....
...
.
-
6•
.Ml!!!!
It
.
.
-I
(
II
....
C
n_
,
r.J
I
•
..
!
,/)
A -- I
.'
11'1'1 - I
-
-fr
-e-
---
-
..
•
-?J"
,.
•7
.
-'
..,
-
•
r
-
-
I
•I)
·�
3t
-
r
-
J -,.
JI
I r.1
-
-
1... : Vf\R- £v ( l +-� + � 'P f'--'
,,,,.
,
I
■
�
I
I
]
-
")
•
:.,
.
--
'.
rJ
"
1
- 1
,,,
�
-.c
IW
'
+
7r .
,1
.
•
,
-
·�
T
,
.
I
IM:
I
'..
...
-...
#:
.. ,
-�
,..
"II �. ,
-
I I,_•
.,
f...
I
-
�
--
!
I'"\
•7
I.I
s.
c;,,
:ar
-
�
f
•
�
-
I
'--
•
--
•
... " ""
...__
-.
-
r
-
- -
J ,
-e-
?)
-
II
-e
�
";;ii.
-
••
r,
-
-z;
:§=,
�
J
7F
--
C}
t
lI
�
••
r�
rI
•
-
•
'?I"
JI
-
-+-
-
-
-...
]
•
�'
�
--�
�
,
7llS
0
-
...
-I
-
�
�
-
-,
t.
�
-
.
I
-
::;;;;;j- ,
--
...
--
,�
•
--
i'
...
.
•y
-�.
•
.I
•
.
0
0
..
7•
V
(Fig. XV, cont .. )
I
•
'
'
'
I
•
'1
•
.
•
Ties in the above examples were added after the
completion of melodization.
(
'-.,...
•
•
•
0
0
---
-
-
-
--
-
-- ---- - - - �
..
a.
•
Lesson CXXXV.
Composition of Durations for the
Attack-Groups of Melo�y.
Composition of durations for the attaclt
groups of melody can be accomplished by means of
technique previously defined as Evolution of Style
Every attack-group, monomial, binomial,
in Rhythm.
trinomiaJ.., quintinomial, etc. can be expressed
through the different series.
binomial of
•
3
3
4
4
For instance, a
series is 2 + 1 or its '' converse; a
binomial of
-
binomial of
8 series is 5 + 3 or its converse.
series is 3 + 1 or its converse; a
8
Likewise a trinomial of
4
4
•
•
series is
2 + 1 + 1 or one of its permutations; a trinomial of
f
is 4 + l + 1 or one of its permutations; and the
trinomial of
•
p�rmutations .
8
8
series is 3 + 3 + 2 or one of its
Selection of durations for the attack
groups through the different series permits to
translate a piece of music fro,m one rhythmic style
into another.
When a choice is to be made as to the
f orm of a binomial or a trinomial, the form of balance
(unbala nci ng, balancing) becomes the decisive factor.
..
•
0
0
Thus, out of the two binomials 3 + 1
and 1 + 3, the fir st is more suitable at t he
beginning of m elody and the second -- at the end.
•
4 series:
2 + 1 + 1
In the case of a trinomial in 4
at the beginning, l + 2 + l somewhere about the
center and l + l + 2 at the end.
Likewise, in
series: 3 + 3 + 2 at the beginning, 3 + 2 + 3 about
.
•
the center and 2 + 3 + 3 at the end •
Four at tacks
can be achieved by splitting one of the tefms of a
•
as a
Splitting of the terms serves
''-
trinomial.
general technique for acquiring more terms for low
determinants.
0
•
Examples of composition
• of durations
for the attack-groups o f melody where each term
of an attack-group corresponds to one cl1ord:
I
=
A.
l
A�
= a + b + c + d + e ;
Ao
=
a + b ;
A�
=
As = a + b + c ;
a
A )" = a + 2a + 3a + oa + 3a + 2a + a
Series:
3
3
T = 3H , + (2+l) H2 + (l+l+l) H3 + (1 + 1 + 1 + !. + !) H 't' +
2
2
2
2
u
•
0
0
10.
5
4
J.
d J jJJ
fl J D l J J J J
j ,
•
--.
U-1 t.1-1
Series :
i
Yv1 T
V1 •
¼
+ (1+1+2)H5 + (1+3)H� + •4H�.
i
4
0
S er1.e
. s:
6
6
T = 6H, + (5+1)H� + (4+l+l)H3 + (1+1+2+l+l) H� +
+ (1+1+4) Hs + (1+5)H� + 6H7 •
(Waltz or Mazurka)
Li
q'
0
0
11 •
S eries
. :
8
8
•
+ (5+3)H2 + (3+3+2) H 3 + ( 2+1+2+1+2)H" +
,
+ (2+3+3) ff( + (3+5)H_ + 8H 7 •
T = 8H
(Foxtrot, Rhumba, Charleston)
� i, 1 •
•
,....
1 · v1 ,
1 v 1 -v i
1 1
..--... ,,....._
u,
•
•
,--
1 · -v 't
0
•
Figure zyr .
•
.,
�. �., SERlE)
9
I'
�I
�
�
I,
I
I[
•
••
�
,,
•
,,. .. ,
;"')
I •
-- •
I• I
r
•
-II" '
.
1·
ft\lS _
I
'
•
•
�,. .
I'
r,/
!
ll,
'
-
•I
�.:•
'!:
�,:
' i:
IT
J
II
•
-(/J
,· ,r
-ti"
•
�.
"
•
•
•
...
�
.
•
t
•
•
�:
b�
-I
ti
r
,.
I
}
6.
I
•
•
I
I
•
-
�
C
a
-
l!!!!!:
�•
I
I
•
l¢i'
(l
�
IE
....
.•
•
-·-
I
-e
�
•
p.-
p�
,I
-�
�
·�
,�
�
'1T
.
-
I
0
0
12 ..
(Fig. XVI, cont . )
V
fO
•
I
f",•
Sl,t.1E5
•
"""'
I
I'
�
ti
•
�
r
••
�
·� .z.
•
.
.,,.
-·
I
-
-
�
{ -
I
•
�·.
I
�
.
I
•
�
•
-•
-•
•�-
t
,,,I
I.ill
-I
I
TA
i"-,-•
1
I
•
,.
-
m-·�.
.L
�
�
-
-"'
�
�
,.
••
+
ji
A
•-JJi
•
'
52
'
•
b
'
l:
I
•
�#- ',
•
•
-
•
-a •
.
�--c-----=====�'-----· -'--- --- - -- -. -- --- ---- --. I s��I f.s
r,.,
- '• 'I • ,-..
!·
.
•
•
I
•
I
:.i
.,.
.
I
I
.,
I
'
•I
•
�
..
•
,
�.
•
""-"'
--�
.I
-
•■•
I
,�
-8-
-
-- J
:i
.
�
�
�
••
g
-;;
-
�
�
0
0
13 •
The final and most refined technique
of coordination of the attack and the duration
groups takes place when the attack-groups are
c onstructed independently of T.
interference between the
As this causes
attaek and the duration
groups, the duration of the individual chords is not
conformed to bars or their simplest subdivisions •
•
We shall take a simple case for our
illustration •
Let us cl1oose A
+
2a + 2a + 3a + a + 4a
= r5+4 == 4a + a + 3a +
'
= 20 a .
Let us execute the dur ations as T
As T in this case has lOa and A has 20a, the
=
interference is very simple.
a A
a
1 (20)
2 (10)
= 16t •2 - 32t .
Let T" = at, then :
Hence, T •
NT"
-
32 -a 4
The duration of each consecutive H equals
the sum of dur ations during the time of attacks
corresponding to such an H. ,
Thus, H , corresponding to 4a, the dura tions
of which cons titute 3t + t + 2t + t, will last 7t.
Likewise the next chord, i . e . H 2 will last t as at
)
0
0
V
•
14 .,
this p oint melodization consists of one attack, and
that attack c orresponds to one unit of duration.
Here is the final so luti on of the case.
(1)
(2)
a
a
Ji = i + 1. + 2 + £. + £. + Q + 1. + ! =
1
l
1
l
1
l
H
1
1
T
M) _
= 4aH, + aH 2 + 3aH 3 + 2aH� + 2aHr +
T H
1+1+2 + L+3 ) + ( 3+1
+ !.
+
l
4
4
4;
+
2+1+1 +
4
+
1 + 1+2+1+3) =[(3t+t+2t+t ) H
, +
1
7
7t
2t) H + ( t+3t ) H J +
+ (i ) H2 + (t+t+
�
3
4t
4t
t
•
t +t
3 t
+ [{ !� ) H,r + (2 4i ) H" + {½) H ?
+
M
8
8
�
1 . r1
( t+2t;t +3t) H g ]
n
.11 J
r.r .
J . rJ
•
n
rJ
+
J P l.
0
0
15 .
•
'
u
Figur e XVII,.
•
....
,
1�,·=t
•
.,,
-
•
-1; .,.
L,, ✓
-
•
�
I
1
*·
•
. ...
�t,
-
)
.
•
�
I .
I� •
•
•
0
- ..
•
• •
-
�
•
L
�
•
... I •
.
I
.
-I
•
I
,.,.
I
,
•
-
.
�
d.
C:
I
...
....
I
,
,
I
•�.•
--9•...
t�
.:
,I
�
'
'-
..
---
l·
I
•
•
•
•
J
0
0
16.
u
Lesson CXXXVI .
Direct Compos iti on of Durations p9rr,elating
M�lody and Harm9ny,
Time-rhythm of both melody and harmony can
be set simultaneously by means of a proporti9p�te
distribution of §ur ations for a constap� guantity of
IIC
attacks of
I.
This can be achieved by synchronizing a
polynomial (consisting of the corresponding number of
•
terms, representing at·tacks) with its square, or the
square of a polynomial with its cube ,· etc .
For instance, we would like to have 4
attacks per chord in the style of durations of the
!
series.
Let us take a quadrinomial: 3 + 1 + 2 + 2
and square it.
(3+1+2+2) 2
T (M) .
=
(9+3+$+6) + (3+1+2+2) + (6+2+4+4) +
+ (6+2+4+4)
The above distributive square represents
The T (H) is the or iginal quadrinomial,
synchronized with the
8 (3+1+2+2)
distributive square:
= 24 + 8 + 16 + 16
Thus we obtain:
T
M
H
=
9t + 3t + 6t + 6t +
24t
3t + t + 2t + 2t
8t
+
0
0
17 .
6t + 2t + 4t + 4t
+
16t
+
n...,..1 '
-
M
6t + 2t + 4t + 4t
''fst •
8
8
Ir' ....,
.
_J
-
J . f> l J
-
C
M
•
J.
•\
0
-
J. i
_J-
C.
•
FigPr� XVIII.
=·t1
,
-.
•
"\.
..f'I
-JI
-· ,
�
�-
,. r
8
"
.
•
-
•
. .,.
-
:..,,_z
-
�
�
-
•
II
""
.
...
I
3;
r
-
-
-
a
�
�
-
I•
•
$=_
�
[
0
I
.
-
C
...
..
-
-
�'
'
Likewise, synchronization of the
distributive square with the distributive cube can
be used for melodizat ion of harm ony.
I.
0
The group of the
square furnishes durations for the chords and the gr oup
,
•
/
0
0
18.
of tjle cube furnishes durations for the melody.
T
T
M
2+1+1 3
H . = 4 2+1+1 2
=
8t+4t+4t
4t+2t+2t +
+
16t
8t
2t+t+t
+ 4t+2t+2t + 4t+2t+2t
+
8t
l8t
4t
2t+t+t +
4t
+
••
melody: M
4t+2t+2t
8t
+ 2t+t+t
+
4t
This produces harmony:
H
-......
M
d
2t+t+t •
4t
= 9H, and
= 27a, with constant 3 attacks per chord .
M
8
8
+
-
�
L J
J fl l fJ
d l J
9 4
0
H
•
Figure XIX·,
(please see next page)
•
•
•
q 4
0
0
1
0
•
•
,�
•
..
�
-
••
,
.,
��-
i.
,_
·�
I�
'
,I
•
•I
-
-6-
�'
"
.,.
I
�
•
...,_
...
.....
---
--o=
.
-
i
-
It
-e-
-e-
..
C:
I
.�
'
•
,
-
�
r -
-
(;/
�
�
,
I
_,,
r
,I
-
.
'
,,
4I
�
�
""'
15'"
.,,
=IF-
£j
•
-
•�
.
'
•
7
•
�=
•
..
---
.�.
--
� ..
.
I
0
?r
�
�
•
(;.I
:s
i
-:s:
r
-
-•
I
,.,
-8-
�,
'
'
?j
•
,
- ""'
...
lI
(
.
,,
-
�
�
,
,
-
�
'
...
,..
·-
.
....
,
c:;;
IJ
'
-
-
�
•
I
- --
?
-
t;.iiill
•
I'
-
(.7
+- It
,_
1
-
.-
t
A
,
I
I
.-
•
_I
-
"
'
'
I,
�
--
--
-
19 .
-
,".
.....
-
-8-
,.,
♦ L _,,,9
'
J
l
•
0
0
For greater contrast in the quantity · o r
at tacks between M and H ) , use the synchronized
first power group for H' ) and the distributive
cube for
•
M•
In addition to distributive powers,
coefficients of durat ion can be used.
.
•
For instance:
- (3+1+2+J.+l+�_:t-;l.j-2+1+3) + (3+1+2+1;+-1+l+.1+2+1+3)
6+2+4+2+2+2+2+4+2+6
.C
)
0
0
21.
Lesson CXXXVII,
Chromatic Variation of the Diatonic
Melodization,
It is mor e expedient to obtain a chromatic
melody to diatonic chor d progr essions by using two
successive operations:
.
•
(1) Diatonic Melodization of Harm9ny
(2) Chromatization of Diatonic Melody
The first is fully cove�ed by the
preceding techniques.
The second (chromatization) can b e
accomplished by means of passing or auxiliary
chromatic tones.
The most pr actical way to per form
• this r hythmically is by means of split-�nit_groups
(see "Theory of Rhythm": Var iations ) .
This does not
c hange the character of dur ations (wit h respect to
their style) but
merely incr eases the degree of
animation of melody.
Figur e XX •
Example of the phromatization of
Diatonic M.elody,
(please see next page)
0
0
22.
(Etg. XX)
r
1> 1 ?.10N \t ME.lOJ>\ l.A"llON -
o.
I
·�I-I
�
-
•
I!.
,
�
-·'• J-,_
�
i
'u
I•
�
�
-=
�
l llf1 II
.,
.
/
I,,.
II tJ ,_
••
�
'
•
.
., ...
I
LI
•
•
•
a:'""• ' ..
I
,
•
I
�C
-•
., - u ,
•
I • 11.
••
I ••
-t:1- •
�•
�
�:
-
I.
•
,.:.:,t '
•
,-
•
I
•
'
,_
.,
It
,
{.
�
.
�:.
-- •
I•
- ,-
�
'
-.
r.
, •
�
..l
�
�.
.1
,.
•
•
.�I-
�·
- '
•
•
.,
)-'9-,
L •
.
•
"
'
•
-
_t
•
,
.I
�-
•I
L
l7i'
--
�
--
•
,
j'.
I,'
lJ
•
-?
�
;
r
•
4·
- .
•
•
-
-
.
�·
a•
•
1S
-
•
I � •,.•
,
I
I
,
•
�:
•
I
e·
-
0
0
23.
u
The r: (13) FapJ1lies,
(Intr oduc tion to Symmetric Melodization)
Each style of symmetric harmonic continuity
(Type II, III and the generalized) is governed by the
2 (13) families.
Pure styles are controlled by any
one � (13) , while hybrid styles are
based usually on
two, and seldom as many as three, � (13) .
The c omplete manifold of � (13) fa milies
corresponds to the 36 seven unit pitch scales which
c ontain the seven names of non-identi�al pitches.
The � (13) are the first expansion (E,) of such
scales.
We shall classify all forms by associating
1, 3, 5 and 7 as the lower structure [as S(7) ] with
9 , 11 and 13 as the upper structure [as S ( 5) ] ,
eliminating all enharmonic coincidences, as well as
all adjacent thirds which do r:i not satisfy i = 3 and
i = 4.
These limitatior1s are necessitated by
the scope of the Special Theory of Harmony.
Figu;re XXI.
.
Complete Table of � (13)
(please see next page)
0
0
24.
•
(Fig. XXI)
r
R\111[
--
•
•
·E•. -e.=-
�8'.!i
p+
',
■I
.
._
I
.
II
"�
,
�
'
,
•
"
l
---
I
--'J' I\I
ft
--
�
�
�.,_
...
...
�
.. .-v
--
J,
•
PL· ..
�
V\ ll
XX2t2:
*
-
•
•'VI
-
;i:
.
�·8X2ll1
-�·
-�
---a
..
-
•
..
·-
r
�
�
" ..1
� 2.:5,..
'..:ft
-
'
!�
'
-
-
\I
�
:s
�l[L
ff
-
�
.
...,,
�::1
-
,., I
Ac
:f=.. :t=..
1
--
g---
,l°'ll 'ill II
-
0
0
..
J O S E P H S C H I L L I N G E R
C O R R E S P O N D E N C E C O U R S E
With : Dr. Jerome Gross
Subject: Music
Lesson CXXXVIII,
pymmetric. }.\elod,ization of Harmony:
.
•
Symmetric melodization provides the
composer with resources particularly suitable for
equal temperament ( '1:/2 ) .
Whereas in .the diatonic
system s ome chord-structures , particular·ly o f a high
tension, produce harsh sounding harmonies, in the
r
symmetric system both the chord-struc tures and the
intonations of melody are entirely under control and
are subject to choice.
The teclmique of symmetric
melodizati�n makes it pos sible to surpass the refine
ments of Debussy and Ravel.
And, whereas it took any
important c omposer many years to crystallize his
original style, thi s technique of melodization offers
36 styles to choose from when one
a time.
Y
(13) is used at
The amount of p ossible styles grows enormously
with the introduction of blends based on two L (13) .
Then the number of styles becomes 36 2
Likewise by blend.ing three
Y (13) ,
limit of mixing, we acquire 36 3
=
=
1296.
which is a reasonable
46,656 style s .
It is cor rect to admit that only about 4-
0
0
2.
of the 36 master-structures have been explored to
any extent, the rest being virgin territory packed
with most expressive resources of melody and harmony .
In offering the following technique, I
shall use symmetric progressions of type II, III and
the generalized form in four and in five part harmony.
•
The main difference between the four and the five
parts is density .
For massive accompaniments use
five and for lighter ones use four-part harmony .
When all substructures [S(5)
, 8 (7) , S (9) ,
'
S ( ll) ] derive from one master-structure [
L
(13) ] ,
they adopt all intona tions of that master-structure.
The easiest way to acquire - a quick orientation in any
r
(13) is to prepare a chromatic table of such a
matter-struc ture.
Ta.king <£. (13) XIII from
Figure XXI, we obtain the following table of trans
pos itions .
Figure_ X,XII...
•
•
•
)
0
0
I
u
Such a table is very helpful, as all
intonations for both melody and harmony can be
found for any symmetric progression.
Each
L (13)
being E, of a seven-unit
scale corresponds to E0 of the same scale.
The rest of the procedure of melodizat ion
.
•
is based on the same principle of tension as in the.
diatonic melodization.
The functions added to
respective tens ions of chords are the most desir,able
•
ones as axes of the melody.
Thus the axis of the
melody above 8(5) in four-part harmony is either 7 or
u
13.
Actually such a choice creates polymodality, as
0
S(5) d0 serves as an accompaniment to �elody which
is db or d� respectively.
It is pGlymodality that
makes such music more expressive.
The following is the table of melodic
axes for the respective structures in four and five
part harmony.
more than one.
In some cases there is a choice o f
Some of the forms are admitted
because there has been practical use of them already.
For example, 8(5) in five-parts with melodic axis
on d , (= 9) .
It is interesting to note that
L
(13)
XIII is used most of all, and that it is the most
ob vious master-structure, as it consis ts of a large
G
8(7) and
a major 8(5) .
)
0
0
•
u
Figure XXIII .
Table of Melodic .Axes in Relation to
the Tension of H.
Master-Structure : � (13) XII I.
-•
. .
c�...
--
:£
-
�
I
1l
'�
,�
,
,I
s (s)
.
�
,.
..
1�
5(s-)
·�
.
-
.
,
!> (5)
·;
•
.5
..
•
-
,.. ,-
-f ,�
'...
.�
-:
.I
S (7 i
u
- :i:
-
.
.
AM,
tL.
, :,
-Aaj
S 7 i ,W./ tL.
·�
I
�
i
UL
•
�
. .
.£
-
-
�
•
f
•
' .,..
' •'1
�
-
••
.
7
5'
h ..
• I•
•
:a::
ri "-
h rn1
'
" •,.,
..
_,, 1
-
p
':
-
',
,,
,
.I
-
.
•• -
-·.,
rL s
•
r,
5
.. ,
•
.
0
0
5.
•
(Fig. XXIII, cont. )
K
,
cl. 1
•
•
)
0
0
.,
6 .,
Lesson CXXXIX,
•
•
Using this "f: (13) we shall melodize
a generalized symmetric progres sion in four parts
.
M
in ff = a .
Figure XXIV.
--
Theme: 2 + 2 + 2 + l; tension: 8 (5) + 28(7) +
•
+ 8 ( 9 ) + 2S ( 13)
"2:" (13)-f XIII
o_
a
I I
Il
)1
Figure XXV•
Theme: Type I I :
� (13) : XIII
C ::: 2C.s-
I3
S
\I
+ C-7 + 2C3 + C-s-
Il
tensi on: 8(5) + 8 ( 7) + 2S(9) + S (ll)
M = a
ff
(please see next page)
0
0
7.
(Fig. XXV)
•
q
/3
II
/3
7
I3
13
I1
I3
:
I
I
I
•
I
•
s� �
..._
_
?r
7
�
if-,
'�...--==:'s_..!....?
__
,
_
s
__;_
?
__
q
-------1..
'f
_
__;
,
L.._.
'
_ ---------
?r
_
1
_f._______;..s
=-
_
!...,__
With more than one attack of M per H',
the quality of transit ion in melody, during the chord
changes, becomes more and more noticeable .
In melodizing each H with. more than one
attack of M, it becomes neces sarr �o perform modu�a
tions in melogy.
Such mod1.1Ja tions are equivalent
to polytonal-unimodal and poly:tonal-po_lymodal transi
tions.
The technique for this based on common tones,
chromatic alterat ions or identical motifs is provided
in the Theory_ of Pitch Scales (The First Group).
ExB.!Dples or SY!Pmetr�c
Melodization.
-r
v-
0
0
•
8.
��
"'
-
M
-
�+ '+ + � j
l.I.
�
]
'l
.. '
4 $e.R.tE.� OF
''!>
-
4
■
°'
�
•
s
\\
�
-
-.
.
I I
:3
I)
/I
T.
-
.
•
/I
r -•
�
c;
II
.
'... ..
..
'■
.,
. ....
•
•
IY�:=:::;========t::;=-=========t=;::=========t===========1�==========::t�!I·:Z:"2·=======t:=:1:�-�======:t=
rT ,-1
1111111-
I
••
-
1
i.1 -q
1
I3
V1 I
: �..""
:k.loo
e. ■...
. � •t- .P.■=-�.,.,
A•
, ..,. 1' .:...
�h
••...
....s.. ��
, ...." + P..
..- ..,
,
__.-
.
► .-... -8:-
��� f-+-1---+--l--+-4----+--+---+--+--1--1---+-l--+--+--+--+----+--+---+--+------H-I
I
•
I
l
0
_,
-
. I
•
-
-
"
7
•
.....
I�./
7
..
•
!!:
'·
-·tr -- a-. .
II
��
•
■
4-
'.I
•
0
t
--·
•
•
I
,':.
I
-
- --..•
I •
,
-
-
t
I
c::;;;, •
•
.
•
J
•
s+:
-.
�
M
I ,.
,
• -i
-
•
2
i�
·
�
t
I
,
•
•
�-rt
. ·v
��-
..•
•
-
0
0
•
u
(Fig . XXVI, c ont. )
_.,,. C:! •
•
-
I
•
....
--,
-,
-·�
'
P...J
"
-
;ii!!
�=
•
....
..
0
...,
..'
•
•
l kii
.I
•
..
I
-
•
.
"
-1;-•.
?P I
•
•
-
.•
!- -f. I
•=
..
· :a":'V
'?J.
�
I
T
,T;
.
-
;t,.
�
.
�
.
'
•
•
.
.
-
'.
�-
I
•
I
,I.
'•
•
•
I
�-
�
• I
r
�.
•
•
-
��� '
-E
l
�
•
.
• .
• •
If:
I•
•
•
•
..
-
•
-
..._
.._
•
.
With this type of saturated harmonic
c ontinuity melody often gains in expressiveness by
.
being more stationary than it would be desirable in
the diatonic melodization . Greater stability of
.
tension is another desirable characteristic •
•
•
.I
.
I
·-...
.
; ti::
-•
•
::i!
�
u
-
•
• I
--
.
Gi
I
•
.
��·:
•
z::�
......... , ....
•
:
�
!•
•
•
0
0
10.
While mixing the different master
structures for one harmonic continuity, it is
desirable to alter either• the lower part of the•
_(_1_ 3 ), i . e . 1, 3, 5, 7 or the uppe� part of it,
L
i .e. 9, 11, 13, wit hout altering the lower.
Let us produce a mixed style of master-
•
structures, confining the latter to
After su c h a sele ction
(13) XVII.
L
L
(13) XIV and
•
J.S
made, the
master structures become simply: �, and Y- •
Now in devising the style we inusb r esort to the
''
coefficients of re cur rence, as the predominance of
•
2,
one � over another is the chief stylistic character
istic.
scheme :
M
n
Let us assume the following recurrence-
2 L,
+Y2. .
= a + 4a .·;
¼ serie� of T.
= 2S(9) + 8(13) .
Figure x;xvrr.
(please see next page)
i
-
)
0
0
•
11 ..
(Fig . XXVII)
.. -�ll �
'
•
,,
6
•
•
�-
I
•
- - 1 ...-
\
\ ')
·"-
:tfl:
I
•v
-
�;
·e
�
.,
�
-
·-
�
f
V
•
•
C
f:@
:. I ,...
•!!f,. ""·
\ fl)
.
.0 A
•
I :,
f�
'
....
a
L
C
ILi
-e
�
\"'>
.
II '
,..,
...
.I
•
r
,.
I;
1' ;
'
� -
-·�
•
•
0
0
12.
Lesson CXL.
Chro��tic Variation of the Sy�metr�c
Melod :Lzation .
Any melody evolved by means of symmetric
melodization can be co11verted into chromatic type by
means of passing and auxiliary chromatic tones.
Such
chromatic tones do not belong to the master-structure .
Rhythmic treatment of dur ations must be performed by
•
means of split-unit groups.
Fig ure XXVIII.
Example of ChJ'omati� Vapiation of
=·
the SY!D�etr�c Melodizatipn.
,,
1...�
� .
··- t
-
,,
,,,.
-
'
I
r
---
,
•1
t
b
,"7
•,r1
(;I
-' •
".I
7
'
-
I
'
•:JI
.
�
,
•
..
�
..
-
.. ..
. =- ...
-.
. �!.
u -:5!!l
lij-
If■
Theme: Fig. XXVII.
,
•
�j ,t
�
•,.
-
.
..
"" .
1 • .. •,... "" ...,
j
·•�
'
-•.
-
...
t ...
'
'I
•
..
�
-
.
'
�
.
·-
I
-...• . ...
•
•K7
r
LillI,,
�'.�
-
.,
..
�
.
---�
,
r,•
(;}
-
:!s.'
'
.
�
•
0
0
13.
All rhythmic devices such as composition
of attack and duration-groups are applicable to all
forms of symmetric melodization.
Chromatic Mel odiza�ion of Harmony
Chromatic Mel odizat ion of Harmony serves
the purpose of melodizing all forms of chromatic
.
•
continuity.
This includes: chromatic syst.em,
!Do.dulation, enharmonics, altered chords and also
•
hybrid p.armonic con.tinu,ity,
As a consequence, it is
applicable to all forms of symmetric progressions,
but by th is we have nothing to gain as symmetric
melodizat ion is a more general technique .
There are two fundamental forms of
•
chromatic melodization.
One of them produces
melodies of either chromatic. type, or of extensivefy
�hr oma,t ized type .
Another produces melodies o f
purely diatopic t ype .
The first technique consists of
as auxiliary
anticipatipg cho.rdal tones and usipg them
•
tones .
In a sequence R, + H2 + Ha + • • •
the
chordal tones of H2 are the auxiliaries and the
chordal tones of H ' are chordal tones while this
chord sounds .
In the next chord (H 2 ) the chordal
tones of H 3 are the auxiliaries and the chordal tones
of H 2 are chordal to nes wh ile this chord sounds.
This
0
0
14.
procedure can be extended ad infinitum.
As all the disturbing p itch-units are
•
harmonically justified as soon as the next chord
appears, the listener is not aware that nearly all
chromatic units of the octave are used against each
chromatic group, especially when there is a sufficient
number of attacks of .M against H •
Auxiliary tones must be written in a
proper manner, i.e. by raising the lower (ascending)
•
auxiliary and by lowering the upper (�escending)
auxiliary, even if they have a different appearance
in notation of the following chord.
L
Figure XXIX.
•
elodization by_ M
eans
Example of Cpromatic M
of .Anticipated Chord�l Topes.•
(c•-!.
..
•
•
.
•
l
b.
-t.�
�
•�F•
�[
:ti!
.•
I .
••
.�.•
.,,.
I. I :
-
- -.c 7
.
�
I•
I
I
.
�-
�.P'7
.
-
.
�:
--
-
-
!
I•
crJ:
:i
.
•
•
�
]
•
•
:a.
E,1' 1
.
I
I
�·
I
0
0
15 .
(Fig . XXIX, cont . )
.,.
-�-
•
'
�
..)
.
..
.
:.I '►
:J:
1••·
';
- • •I
'lfl
.
u
'
llt1
t
-
,
,,..
I
'
I
#".
�
•
tit�
•
t
•
1,,-
I
•
I
•
•
II
I
•
I
I•
�-
•
-•
-
.$,
i<... .�
��
�
lj:8=·.
•
*
�
:ii!
..
f
.
---:
I
•
"
.
•
•
-I
p'·
r: •
__._
-Q:
�-
-,..:
-(;I •
�
.
.
-
��
,'
•
L
t.,:
�
'
�I:
•
-fl}
I
I
'� :
J:
tJ� .
g_
I ..
,_ II
.
•
•
u
0
0
16.
Lesson CXLI,
u
The second technique is based on the
method of construc ting a guan61tative scale .
Such
a scale can be evolved by a p11rely ,statistical
method, Whereas it is not obvious even to the most
0
discriminating ear, it is easy to find by plain
addition the quantity in which each chromatic pitch-
.
•
unit appears during the course of harmonic co11tinuity •
In order to find a quantitative scale it
is necessary to write out a full chromatic scale
from ap.;y note (I do it usu.ally from . .£) .
·,
The next procedure is to add all the c-
pitches in a given harmonic progr ession (doubled
-
tones to be c ounted as on e and enharmonics to be
included).
Then all the c� - pitches , d - pitches,
etc . , until we sum up the enti re cliromati c scale.
This produces a quantitative analysis of a full chromatic
scale .
Now by eliminating some of the units which have
lower marks, we obtain a guantitat�ye (diatonic) scale.
If .there is one unit having highest mark,
it should become the root-tone of the scale and,
possibly, the axis of the future melody.
If there are
more than one U:Qits having highest mark, it is up to
the composer to assign or1e of th;,em as an axis.
In the chromati c progression of
0
0
0
17.
Fig._ XXIX, the quantitative analysis of the
chromatic scale appears as follows.
Figure XXX.
-
,_
4
•
•
•
By excluding all values below 4, we
obtain the following nine-unit scale 'v,ith the·
root-tone on � (maximum value) .
•
Figure �I._
If such a scale still appears to be
too chromatic, further exclusion of · the lov,er marks
may reduce it to fewer units.
By exc�uding all the marks below 5 (in
this case) it will reduce the scale to five units
. and give it a purely diatonic appearance.
0
0
18.
figJJ!' e WII,
•
The next procedure is the actual
•
melodizabion, which is to be performed according
to the diatonic tecrmique.
•
By this method, the
tones which quantitatively predonl'inat� during the
course of chromatic continuity (an d which, affec·t
0
us as such physiologically, i.e. as excitations)
become the �its some of wh,igh sat�sfy every chord
and attribute a great stylistic unity to the entire
J
•
•
product of melodization.
The quantity of attacks of M against H
largely depends on the possibilities of melodization.
Fig ure XXXIII.
4
C
Example of C hromatic Melo�izatio� by
means of 24ant� tative piatonic S�ale
(please see next page)
I
0
0
19.
(Fig . XXXIII)
-
.
-
�
.I
2
�
-
I
•
�
-
-
-�
-
•
•
•
-
•
•
'
�-
':s5:
,.-
.-
. ....
-
•
.
Ji'Q
.1
p 1""
-· .-�
I
•
•
I
,
' '
,.
P-
;,e,-
�
..r
I
•
-
,, ·1
II
••
•
.I
.
.
Cl
,-
••
-0
e
.
--
-,
9.:eI
]
�
. -..
-
--,,
�
I
,::,
�
•
.,
-
�
•
�
..
I
I•.I
•
�
-
•
,I
r
•
*
;#
�
. ..
e
I
I. '
.I
•
••
••
•
�
I:,i
_
.,
I'
•
:f%�
.
a
-
J,�
.-
,.f-8..
.
r
•
CJ
':/F
-
0
0
20.
u
The two techniques of chromatic
melodization can be combined in sequence.
This
results in contrasting groups of diatonic and of
The quantity of H covered by
c hromatic nature.
one method can be specified by means of the
coefficients of recurrence.
For example: 2H di + H ch.
•
•
Figure XJQCIV.
•
�-
=
'
�
'
\.J
�*
,.
".
,
I•
•
•
.�
•
•
·�
�
,
•
•
•
''-
ff
I-e
.�
"")
I
-tJA HI
•
•
•
•
0
0
J O S E P H S C H I L L I N G E R
C O R R E S P O N D EN C E
With: Dr. Jerome Gross
Lesson CXLII.
C O U R S E
Subject: Music_
HARMONIZATION OF MELODY
The usual approach to harmonization of
melody is entirely superficial when the very fact
of finding a "suitable" harmonization seems to solve
the problem in its entirety.
Looking baqk at the
'
music which has already been written, we find quite
a diversity of
styles of harmonization.
In some
cases melody has a predominantly diatonic character
w hile chords seem to form a chromatic progression,
and others when meiody has a predominantly chromatic
'
character while the accompanying harmony is entirely
diatonic.
Operatic works by Rimsky-Korsakov and
Borodin may serve as an illustration of the first typ�,
and music by C hopin, Schumann and Liszt, of the
second type.
This brings up the question of
systematic classification of the styles of harmonization
By a pure method of combinations we
arrive at the following forms of harmonization :
(1) Diatonic harmonization of a diatonic melody.
(2) Chromatic harmonization of a diatonic melody.
(3) Symmetric harmonization of a diato nic melody •
•
•
0
0
2.
(4) Symmetric harmonizati on of a symmetric melody.
(5) Chromatic harmonization of a symmetric melody.
(6) Diatonic harmonizati on of a symmetric melody .
(7) Chromatic harm onization of a chromatic melody.
•
.
•
(8) Diatonic harmonization of a chromatic melody •
(9) Symmetric harmonization of a chromatic melody.
In addi tion to this, various hybrids may
be formed intentionally, · and they do exist in the
music written on an intuitive basi s .
The necessity
of handling the hybrid forms of harmonic continuity,
which is inevitable not only in p opular dance music ,
but frequently in music of composers who are considered
"great" and "classical", for the purpose of arranging
o r transcribing such music, requ ires a thor o�gh know
ledge of all pure, as well as hybrid, forms of
harm onizati on.
1. Diatonic harmonization of a
diatonic melody:
There are two
fundamental procedures
required for t� above method of harmonization:
(a) The distribution of the quantity of attacks in
melody and harmony, i . e . the quantity of attacks of
melody harmonized by one' chord, or the qu�nt ity of
chords harmonizing one attack in melody.
(b) Selec�i on of the range of tension • .
CJ
•
0
0
3.
attacks.
Let us take a melody consisting of 12
Such a melody may be harmonized by 12
different chords, each attack in the melody acquiring
its individual chord.
It may offer as well two attacks
of a melody harmonized with one chord�
In this case
6 different chords will constitute the harmonic progression.
Further, eacl1 3 attacks of a melody may
acquire a chord, thus requiring 4 chords thr oogh the
entire melody.
•
Proceeding in a similar fashion one
may ultimately arrive at one chord harmonizing the
entire melody.
''
This is pos sible because no pitch-unit
in a diatonic scale may exceed the function of 13th,
and will merely require an 11th chord for harmonization,
u
in order to support the 13th as an extreme function in
a melody where all the remaining units of the scale may
be present as
melody.
well.
Let us take, for example, the following
Figµre I._
•
•
0
0
4.
In order to harmonize this melody with
12 different c hords it is necessary to assign each
pitc h-unit of the melody to a cl1ord.
Such an
assignment is based o n a selection of the range of
tension.
Let us suppose that we limit our range
o f tension from the 5th to the 13th.
Having a
consider able choice in the assignment of pitch-units
as chordal functions we will give preference to t hose
•
forming a positive cycle.
Examples of assignment of the above
melody:
M
H
T
R ange of tension : 5 -- 13
1
Figure II.
A.
?
7
q
7
7
• •
•
•
•
•
.
.
•
•
u
•
•••
I
0
0
-------.._.---
5.
B.
1
,
,
1
s
S'
5
.
•
•
u
In assigning 2 attacks in the melody
against 1 chord, it is necessary to conceive the 2
ad jacent pitches in a scheme · of chordal functions
(thi�ds in this case) .
Thus, the f irst 2 units,
a + b, have to be translated into
: , which may
assume the following assignments:
13
a
9
11
b
3
5
7
C
9
lI
13
3
5
Likewise, C + d transforms itself into:
•
d
7
The next two units produce:
5
3
7
9
5 - 7
11
9
13
11
0
0
•
The next two units produce :
d
5
7
9
11
b
3
5
7
9
9
11
3
5
7
g
9
11
13
a
3
5.
7
The next two units produce :
The next two units produce:
6.
13
11
13
This group of ass.ignments offers quite a
variety of harmonizati ons, even 1vvith the preservation
of the pos itive system of progressions.
Figur e III..
Range of tension: 3 -- 13
.�
-. e
1 2' -
.'
',
,1
,.�-,_•
...
I•
u
••
3
r�
5'-
1
-
F'
'
I�
r•
.---,,
*
J)
'-
-i!
.r-
3- S
'i - 7
g
Gt
r,I
s
.
I,
r:;;,
-6
T
•
.
.. .
....
,, -s
1.3
rI
-
-
-,
'!_.,-.
►
-
9
r
J
0
0
•
7.
Lesson CXLIII.
Assigning every 3 pitch-units of the
melody to one chord, and distributing them thr ough
the scheme of chordal functions, we acquire the
follov,ing table ..
•
M
H -
•
•
Range of tension : 1 - 13
3
Figure IV.
•
A•
-·� n
-,
'
'•
()
-A
-
�
•
,,
••
-•
II
f
�
-
s
,_
••
1
1
5"
7
-I
..-
•
.I
.,_
,,
1
..•
I
-
":!:
•'
'
'
I
'I
•
'
•.
I
"
-
I
11
13
-•.-
'
-
•
_.
,_
fi
I
fS
•
•
• •
•
I'\'
....
•
I
•
�
�
1
B.
.
1 � - 1 - ·1
e
•
•
•
.I
-
ri
.
•
•
-
-
�
r.I
.
.
-
rI
�
-e
' •
•
--
-
V
.
�
•
r•
-
-
�
1'
�
=
--r:r
�
Q
,
.I
/
0
0
8.
c.
M - 4
ii -
Range of tensi on: 1 -- 13
•
•
'
II 1
I'- •
·
�
11
•.
r•
•
-
•
-
,
•
I
'
,
�
..�
•
•
a:
,r�
-�
-
-
-1 r.
•
J
II
"
•'J
i
'
-,
'
q
0
-
�-s
C
'
•
X
I,
I�.
-
•
r
.,
I
.
•
·,
C7
?J'"
�
-
�
-.
.
�
•
..
,;.
.-. .
.
�
,I '
1
�-
I':.,_
.
,...
.
�
,.
•
-
.
=
•
•
· . •.
�
- .
" •-
.•
.- ·
-
•
5" -
f ';
"7
-
-
.
.
1
''
-1-
'f
-
·�
.
,_
•
-•
-
•
•
•
-
I..J
•
-.
� -•
.. .- .
• .
-
....,-
,-,
Range of tension: 1 -- 13
�
II 1
11
• • "'; " • c..'.i
r• .
M = 6
H
t)
-
.
,.
C7
........
J
r•
--
••
.
•
.
•
0
0
-
••- 1T
••...._
�
,,
-
�
*
•
.. A , +•
-:: '
--
-
\ +1
,
-
'•
•
ff
...•
11�.
I,
'
I
.
-■
r
•
•
,
" ,- -
�T
:
Ir
--
.,
I
" -,'-
,
•
'
'
•-
-fJ-
I
,,
'-
•
I
.,
-
.....
,I
'
•
�
-
-
, •
'
I
�
•
'° A
,. I
•
\
•
IIr- I- ,
..
......
r
,r
I
,_,
•
r
,,
•
�
' I
-
-
1
-
-
-
•
•
"""
.-
�i,a.
V
..
I
-
..�
�
•
9
•
'
*
,
.
3
�
-
l
�J
,
�
,1
_J
- -...
r
I
•
-
]
""
I
-
•
- -,,
....
-
•
..-
-
•
�
-
.
,,.
-
I'
-
i;.
'
-
•
,. -;--
•
I
c::
..
'
-
-.:_-
I
-
I
i;;
-.,
,
-- -
-
.
-
,
.
-
•:,c;;
•
.,
-
,
j
-
'
-,-
-- J
I
]
-
I
�
]
�
""'
--
,t-
I
-
..
•
♦
-
t
•
'.I
-a
I
-
•
•
..y-
l
••
-
-
c:::
•
•
..
,
'
-
-- -
-•--
-
�
16.
I
�
-
•
j
I
•
I11.•
,,
•
I
I
c..
•
A
II
�
.
.
�
•
•I
-
I
Figure x._
,1
#,(
..,J
Q
'(
nM
-
'
-
r
I
•
.
--
r
a
;
-�
,
h1.,
,
-J
• V
L
-.,
,
-
,,
'
'
'
0
0
-
-7
-;
.r
Ii
I
-
,
' :f'-
,.,
.
�J
.I
I -3
•
.
,
I\!
�
..
•I
...
.,.
Ii
,,,
•
•
-
•
-
�
'
•
'
-
•
.
(>
r
.,
!�
...J
- '!1.
-I
� �
G
"
•
I
�
•
-I..
-
�
¾ :�
�
-6
-
.,,
•
.,
'
;
'
...,
I•
.
•
,
'
I•
,.
-•
•
.
-!
J
,,
I
,�
3
•
,
•
'
, • ,J
,
r
-
- '
..
J
-
_,
Q
-
l•
I
,
I
-
p�
-
,..
•
�
�
--
�
I
.•
---
."
-I I'
•
-
'
.
.
I
�
�
--
•
•
,
.,'
-
.
-•
•
';,r..
,
-
I,
""
'
-
.
,..._
-
£J
,
.:::Jr
-
'
�
-- - rI
-- -...
-•
,.
-
•
p
-
Ir
-
.
�
�
9' -7
-
--
�
I
'-"
..
-
-
.a:
--
•
]
•
I
-'
-
,
•
c;;
•
- .....-
.
�
-
.
Iol,
�
.
,r_
-'
,
'p�
�
•
-
.
�
-
-•
�
'�
l
-
..
•
%
-
-f
�I•
•
'
.
.
•
-1
]
A
...,.
,.
e
•
�
I
•
,
•
LSIl
...,,
-
I' ,
')
I
I
.�
.
C
!I
-
f
1
•
17.
,
�
,'
"
�
�
I, ,.,
-
r
,
'--
�;
I
eJ.
�
=o
0
0
18.
4. Symmetric harm on�zatiop of �
symmetri� melody:
There is a very small probab·ility that
melodies composed from symmetric scales outside of
this method have been in existence , as the conception
of symmetric scal es it self is unknovm to the musical
world.
.
•
The problem of harmonization of melodies
composed from symmetric scales requir es , therefore ,
•
As it ha s been
the existence of such melodie s ..
of symmetric
explained in the third and fourth grou P.
'pitch scales, melodie s can be composed through
permutation of pitch-units in the s ectional scales
u
(each starting with a new tonic) .
After the complete
melodic form is achieved the fir1al step corisists of
superimposition of the rhythm of durations on such a
continuity of melodic forms ..
Let us take a scale
based on 12 tonics where each sectional scale has a
structure 3 + 4 and limit the entire scale t o the
•
first 3 tonics.
As
scales of the 12 tonic system
have a wide range expanse it is desirable, in many
cases , to re duce the range by means of octave
contraction.
Figµre XI..
•
L,
•
•
•
•
•
•
•
•
►
•
,
•
•
•
•
• •
• •
-
0
0
The next step is to select a melodic
form based on circular permutations of pitcr1-units
in the above scale and the rhythmic form based on
synchro nization of 2 + 1 and (2 + 1) 2 •
I
u
Figure XI.I •
201#:
fJ.J
•
t
e.
•
•
By superimposing the rh ythm of durations
on melodic form we obtain an interference as the
number of attacks i n th e melodic form is 9, and t he
number of attacks in the rhythmic form is 6.
Thus,
melodic form will ap_pear twice and rhythmic form
three times.
Figure XIII .
Composit i on of Melodic Continuity
Melodic form consists of 9 attacks
-69 -_ -23
Rh ythmic form consists of 6 attacks
Melodic Continuity
•
(please see next page)
0
0
•
20 .
(Fig . XIII)
..
•
s
• •
•
..:..:.....,.--,-----i,,,---'-·--,ta;.....;...
· • -----·
1�
•
r
IL----::�---
a
T
n
..,,.
C
18
s
$■•"""•••-------=---------
•
•
•
In the above melody the sequence of
chords will be assigned to each tonic .
'
\......I
Thus, the
first sectional scale emphasizes 13t, the second -5t, the third -- 13t, the second recurrence o f
the first -- 5t, the second recurrence of the
S
•
second -- 13t, the second recurrence of the third -St, and an axis ( = 18t) is added for completion.
0
0
'
21 ..
Lesson
CXLV,
•
Here are tv,o methods of symmetric
harmonization of melodies constructed on symmetric
pitch scales.
The fir st provides an extraordinary
variety of devices while the second is limited to a
;
considerably smaller number of harmonizations .
A. The first method assigns the importa.tlt
tones (all pitch-units in this case) of a sectional
scale to be the three upper functions of a
L (13}
adding the remaining functions dovmward- through any
The first sectional scale in
desirable selection�
the als)ve melody has three pitch-units (c, e P, g)
which we shall originally conceive as 13 - 11 - 9,
downwards.
The continuation of this chord downwards
will require pitch-units of the following nam es:
a, f, d, b.
In the following L°(13) a certain
structure is offered as a special case of many other
possible
L.
Figur e XIV.
� 13
..
I
...
10
0
0
"
p 0
0
0
•
22 .
The upper three functions of the
chord (red ink) may produce their own chord in
harmony.
Thus, the functions 9 - 11 - 13 of the
L may actually become 1 - 3 - 5 .
All pitch-units
of melody and harmony are iden tical in this case.
(See Figur e XV - A) .
By assigning the same three
pitch-units as 3 - 5 - 7 we have to add one
function down. (See Figure XV - B) •
A.11 further assignments of thl3 three
•
•
pitch-units, namely 5 - 7 - 9, 7 - 9 � 11,
9 - 11 - 13,
11 - 13 - 1,
13 - 1 - 3
are the
c , �, e, f, g, respectively, on Figure XV.
This
Figure offers a complete transposition of all the
assignments through the three tonics employed in
•
the melody •
Figure XV.
(please see next page)
•
I
0
0
Figure x:y_.
15""
-I
,
,,.
t
1
�
,.,
•,
.I
�
,
•
..
. ,-• ,..
u
C - l\R.ou?
(
,,
•
'
'
�
'
'
l
I,
a.J
.- -
...
I
..
....
0
-�
•
�
llt'eJ,½·I
• V
I•
-
I
,.,
s
'
..
-
.�
1.
I',1
'I
'
-'8-
•-
I
-!I
•
t
,,...,
,,.,
••
-""
-
--
••
'
�-Q
V
�
-,,,
(.,I
"'
••
,.,
q
�
.
••
.
--
""
*�
--
�
.
II
.
..
---
· ?,
,•
.
..
·0,I"'I
.
'
{
�
"'
,1
'
b - ·- 1..
,.,
'.
�,,
•.1
6J
-
l
,...
�o
..
{
'1.>-
••
,,,,
I
•
I -
""
,,
•
-8-
:i-=-
'7
,"li
I�
'
I >�
,.
,.,
,,,
'
.-
I
1- 1�
�1
rr,,•
u
. ....
B - �Rovf>
�
{!
,
,
••
,V
�
v_
,,.,
, ,·�
�
,..
d.,
.. -
-
•
• ,I
,
.
r,1
. r-½
0
3
,
I�
IN' �"
I- ..
..
:,,,.,
.,
•
l
�'""
vv
b.
,.,
'IJ J.1
h• ,.,
),
r•
r,.I
•
.J
Jf,/
. ,,,.,,,
,,
tL
II
.
7"
i,, ,,
,,,I,,
,,
,,
,,I
'.I "
,
•
•
,,.
'
r:,
Ir:,
r:,
(7
,,,
.
., ..
.. ,.,
�
-'
'.
,..
r
p-j-
0
0
24.
As Figure XV exhausts all the possi
bilities under the given group of chords it is
possible to exhaus t all the forms of harmonization
for the given melody through various forms of
constant and variable assignment of functions �
As
the melody consists of 3 groups, the sequence of
.
•
chords with regard to these 3 groups can be read
directly from Figure XV, and the letters on
Figure XVI represent the respective bars of
Figure XV in such a fashion that the f�rst letter
refers to the first group of the melody, the sec ond
t o the second, and the third to the third.
0
Figure· XVI.
•
•
aaa
bbb
CCC
ddd
ggg
fff
eee
a ab aba baa
cca cac ace
eea eae aee
gg11 gag agg
aad ada daa
ccd cElc dee
eec ece cee
ggc geg egg
aac aca caa
ccb cbc bee
aae aea eaa
cce cec ecc
aag aga gaa
eeg cge gee
aaf afa faa
eef cfc fee
eeb ebe · bee
eed ede o.ee
eef efe fee
eeg ege gee
•
G
•
ggb gbg bgg
ggd gdg dgg
gge geg egg
ggf gfg fgg
0
0
25 •
•
G-
bba bab abb
bbc bcb ebb
bbd bdb dbb
bbe beb ebb
bbf bfb fbb
bbg bgb gbb
ffd fdf dff
ddf dfd fdd
ddg dgd gdd
abe
bcf
cdg
cef
acd
bdf
cfg
acf
bef'
ace
acg
ade
adf
adg
aef
bde
bdg
def
deg
cdf
beg
abg
u
dde ded edd
ddc dcd cdd
cde
abf
�
ffb fbf bff
bcb
bee
ffa faf aff
ddb dbd bdd
abc
abd
•
dda dad add
ffc fcf cff
'
ffe fef eff
ffg fgf gff
efg
•
dfg
ceg
beg
bfg
•
/
aeg
afg
•
The total number of possible harmoniza
tions to be derived from Figure XVI is as follows :
7 cases on constant te.nsion: aaa, bbb, etc .
•
18 x 7 =
0
0
26.
= 126 cases on a tension that is constant for 2 of
the three groups.
35 x 6 = 210 cases with variable
tension for all 3 groups.
Thus, the total number
of harmonizations for the meloey o ffered is
7 + 126 + 210 = 343.
B.
The second method is based on a
random selectior1 of a ""i:""(13) based entirely on the
preference with regard to sonority.
•
As any � (13)
has definite substructures and often 'in limited
quantities, the possibilities of harmonization are
less varied than through the first method.
If one
selects L (13) w ith b� and f4{ on a c scale (see
Figure XVII) the possibilities of accommodating a
sectional scale 3 + 4 (minor triad) becomes limited
•
to only tv10 assignme11ts, namely, 5 - 7 - 9 and
13 - 1 - 3.
Figur� XVII.
l:" (13)
•
••
•
•
•
•
•
•
Retransposing these functions to the
melody assigned for harmonization we obtain the
following results.
0
0
I
27.
Figure XVI�_I.
C - �R.o.Jf>
•
•
•
•
•
(J../
As it follows from this figure, each
sectional scale of the melody permits only two
versions of chords.
Thus, by a constant or
variable assignment of the t,,o possible versions,
a complete table of possible harmonizations is
obtained .,
•
Figure •XIX •
aaa
bbb
aab
bl:>a
aba
baa
•
'
bab
abb
Thus, the total number of possible
harmonizations amounts t o a.
0
0
- - - - - -- - --
- --
-- -
.
-
-
�
.
-
-
28.
In tbe cases where sectional scales
are too complete, the assignment of only certain
For
tones as chordal functions is necessary.
example, in the following
scale based on 3 tonics
and 5-unit sectional scales, it is sufficient to
assign the wh ite notes as chordal functions, then
in the m�lody derived from such a scale, black
notes become the auxiliary
•
Figur� XX.
•
.
•
aid passing tones .
,
•
•
•
,
•
,.
•
•
4•
'
•
.a. (�)
•
•
In some symmetrical scales the structm·�
of individual sectional scales is such that the
sonority of certain pitch-units does not conform to
the structures of special harmony (i.e. harmony of
thirds).
Some of the units of such sectional scales
may be disturbing, and though they may fit as
passing tones in some other chord structures than
the ones emphasized by special harmony, the y
•
•
decidedly do not fit as passing ton es · in many r:,_ (i.�.
In such a case each pitch-unit in such sectional
scale of a compound symmetric scale must be assigned
•
•
0
0
•
J..
either as a chordal function or an auxiliar y tone
with a definite direction.
These pair s, i.e.
the chor dal tone and its auxiliary tcne, ar e
dir ectional units r
In composing melodic for ms from the
scales containing dir ectional units it is necessary
to permute·.. · the dir ecticnal units and not the
individual pitch-unit s .
After all the units ar e
assigned the above described procedur e of harmoniza
•
tion (the second method ) may b e applied.
Figure XXJ .
•
•
•
• -. .. .
,..
•
The arr ows on the above figur e lead
fr om an auxiliary tone to a chordal function.
•
0
0
0
•
J O S E P H
S C H I L L I N G E R
C O R R E S P O N D E N C E
C O U R S E
Subject: Music
With:,.Dr, Jerome Gross
Lesson CXLVI.
5 . Chromatic harmonization of a
.
•
Chromatic harmonization of a symmetric
•
melody is based on the same principle a·s chromatic
harmonization of a diatonic melody (see Form 2,
page 1 of Lesson CXLII) .
The proc�dure consists of
inserting passing and auxiliary cllromatic tones into
symmetric harmonic continuity .
As a result of such
insertion of passing or auxiliary chromatic tones
altered chor ds may be formed as independent forms .
This type of harmonization may sound as
either chromatic continuity or symmetric continuity
with passing chromatic tone s to the listeners.
•
(please see next page)
,,
•
0
0
Fi�e XXII .
C.
FovR.� ?RRf H'(BR,p
J:€.EP LN A D�E.AN\
r 3 --,
_.W1T'H CiHROr'\1\11t.. r\l\ft..,-..o.,),
;i P:(io,.(
-'-'-- -
'-----
J
-,
,
'
....,
-
L, .,.
•
'
,
'
�
-
�
�
'-
.. .
'-
...••
. ..
'-
'
- .J
'• o
,
"
I•
-i
-
•
..
,
I, -
,
,,
...
7, .
'
C. {JO
.II
-
..•
J
'I '
'-
'
,, - ◄
•
�
•
•J
' -
'
-I/-
c;;;
:;..
- n5
•
'
rJ
..
::gi
-
L
�=-
r
/V '-'._
- q��
�
'
�
'
,,,
,
�
.
-
I
"· ,
•
'
'I
l
'
�
�;
o
��
'
l
�-,
'
-,,�-
'
,,. ...,
w' ''
-
' 1
,r,
•
I
�
.
-
J
...
I
._!., •lo •
I
,.
I' . :j:
'- t,~o
-
-
II
•
'
..
-,
�
'
$
I
-,
- ' r;
'
.�I�
�
.
�
-
�
#'v
.
v
X-fr
flJ
,
)(0'
•
•
•
,
r- �
·-�
•,- '
.. �t
I
:,
�-,
· ...
"""
.,
'
J
,
-v
_,
I
CJJ
\.o,
$
-_,,
I
--
.
•
.... u.
I
,
-�
-� ..
,'
.
��
••
r
.
wpi"��
-
,
'
•
•
-
'�
��
.. '
'
-J
.
I
I .,_
.,_,
C'�• U:--"' P.ia 111..
... ._-
,
.
I
•
•
r
...
..
,
'
•
�b
'
I
-
'
-
I .4
•
... {
I
-
I
�
I
•I
;�
..... •
.
I:,c:- ,
"" '
-
•
'
Y-
�
I..._I
l
...
J
. ..
..._,
-,
•
I
-
r
,A)I
�
�
'
9
-
,PIii
-
'
•--,
'
•
'""-
-
.
'
C. 'J
j•
--a-
b'-1
-
I
�
·1
6,.
J '
\. '
-
•
•
•' • •
".,
-
II-
..'J
...
A
I
-
I
...... I ..•
-,- '
I
..
•
�
�
•
-
A
•
,,
-'
.
-
--
I•''.J
,
•
�
v ..
-
�
.
'
r
,.
- II
•
•
I
•
..
..
•
I
,
•
.
] -
'
2.
II
•
-
C
0
0
-.
�
-
.,
•
I
"'\
,-
(
t
,-1- �·-' ... ...
..
;
i*
•
•,.
,_,
I
I'�
-
,�
'i �
,
-
l�
.,
.
''-'
•
"
-
!
.
•
'
- ,-:g1
-
',.
'
I
.,.
·�
'
'
••
•
J
T
,.
i..
r-•
(7
-
'
�
•
�
,
:
a.
DV
I
'
, ,
.
•
.
•.
' I
r
.
:..i/Y
�
,.,�
�
,.
'
'\!
7
I
•
1.
11 -
.
-
....
"I -
,.
'll'
'- I
-..
-
,_ �
'
,,
.. '
�
-
,.
-
....
.
,
r
I
.,
•
-
-;,c
�
'
,
�
•
•
j
..-
••
•
...
•
r-
,...--
'
'
11
-
--
I
•
-
-,
' I
.
�
-
..
..
I - I
'...,"
,
.
•
�
ED •
I..-
• •
�
I
•r-
.-- l
...
-
w
I..L.-
I,
"'-
r
fr
,
-
-
•
--
--
•JI
r
,
.
I••
•
v
•
..
-
•
,,
..fO,T
,:,3
I
�
3•
•
�
I
•
-
\)( �
•
•
I
--
.
�
•- r. L
•
..•
'I
,
.
... -, .,.··.. ± "
... I .- I
- -- --
� -
.
,
.�
...
• Loo
c;
I-
,
"
a
,.
-
.••
•
I
.
..., ·*' '
��
(;J
., C: .._qo_
••
-
-
-
�
'-
-
-s:
,,
,.
�
•• r
&)
'lf=
�
-
,'
,.
--
I"
-
0
0
If you find that certain passing or
auxiliary tones in the above example sound unsatis
The greater the
factory, you may eliminate them.
allowance given for altered chords, the greater the
number of possibilities for the chromatic character
of symmebt'ic harmonic co11tinultty.
6. Diatonic harmonization of a
.
•
Melodies constructed from sy mmetric
•
scales cannot be harmonized by a pure diatonic
continuity .
The style that has diatonic characteristics
is in reality a hybrid of diatopic progression�
stmmetr,ically conn�cted.
0
This type of harmonization
is possible when melody evolved within the scope of an
individual sectional scale can b€ harmonized by several
chords belonging to one key.
The relationship of
symmetric sectional scales defines the form of
symmetric connecti ons between the diatonic portions
of harmonic continuity.
The diatonic portions of
harmonization are conformed to one key.
Symmetrical
tonics do not necessarily represent the root chords of
a key .
For example , a note c in a melody scale may
be 1, 3, 5 , etc. of any ch ord.
In most cases of the
music of the past such harmonizations usual ly pertained
u
to identical motifs in symmetric arrangement, as in
0
0
the first announcement of a theme by the celli in
Wagner 's Overture to "Tannheuser", where identical
motifs are arranged· through '!/2, and the diatonic
portions appear as follows: the first in B minor
making a progression IV - I - V - III.
The following
sections are exact transpositions through the
,
'!/2,
i.e. they appear in D minor and F minor, respectively.
•
Figur e XXIII .
•
•
..
■ ..
�
(j
-
-�
j-,
•
•
•
�
-
�- ·I
, ..
"'
:::[
�-
�-
�
I•
.
'
rt f
-
'
1-.. .,,I.
�
l
!
'
• tI�•
&.
.
In the following example of harmonization
the melody is based on a symmetric scale with three
pitch-units (2 + 1) connected through
3
,/2.
Figure •XXIV .
•
•
I
0
0
•
6.
Each bar comprises one sectional scale
As there are many
utilizing the melodic form abcb.
ways of harmonizing such a motif, here is one of them
producing C0 + c, + C t for each group, and all the
following groups are identical rep roduc tions- of the
original group connected through
•
Figure XXV.
.
•
•
,
s;::
I.,
.,
II
C:
3 ./2•
•
.
I
.
...
.
I
t:
•
•
•119
••
11'
I
;"'
�
"I•
•
II
-
......
•.
#'� .
-
i '. t� f:
il■o
w
1
•
..
f-
XJ
•
•
2
•
-
,.
Music by Rimsky-Korsakov, Borodin and
Moussorgsky is abundant with such forms .of harmoni
zation.
In order to transform the above
harmonization into a chroma tic on.e , all that is
necessary is to insert passing an d auxiliary
chromatic tones.
Diatonic harmoniza t ion of symmetric
melodies not composed on the sequence of identical
motifs where different portions pertaining to
•
•
•
I
0
0
7.
u
individual sectional scales- are c onnected
symmetrically is possible as well.
The latter
form is not as obvious and may seem somewhat
incoherent to the ordinary listener.
.
•
•
'•
G
•
_/
0
0
8.
Lesson CXLVII.
7. Chromatic harmonization of
•
a chromatic melo?y:
A melody which can be harmonized
chromatically must be a chromatic melody consisting
of long durations ..
be assigned to a chromatic operation in a chromatic
.
•
group of harmony .
•
•
Each group of three units must
The usual sequence d - ch - d
refers to every three not es, if the middle note is
a chromatic alteration.
'
Thus , in the 'following
melody the chromatic groups of harmony will be
�
\.._J
as signed as follows:
Group 1 : C - cf- d
•
Group 2: d
- d*- e
Group 3 : a - a'- g
Group 4 : g - g-f- a
Group 5: a - a*- b
F,igur e xxyr .
�w
·t
•
,I
p�
I
•
r
•
•
Ir
•
I
-_,*--
--
0
0
The process of harmonization �f a
chromati c melody chromati cally, consists of two
pr o cedures after the pit ch-units have been assigned
to some number combinations.
As our technique of
chr omati c harmony deals with 4-part harmony, the
melody must become one of the four parts.
Let us
assign the chromatic groups to the above melody as
.
•
follows:
•
Group 1 :
1 - 1 - 1
1 - 1 -
Group 2 :
Group 3 :
5 - 5 - 3
Group 5:
l - 1 - 1
Group 4: 3
•
- l - l
In group 3, a� is a lower ed fifth •
.f"
In group 5, a is a r aised r oot tone. The
following example r epresents the abov e melody in
a 4-part setting .
;I• •'
•
.......
•
"'
,
-
- la
.
"'
,
--·. --
:#·
�
•
•
e
I
,
'
Figur e XXVII.
•
"'.
:..,� .,
c;;
4- '
•
,
.,
'
Ir
...,.
$l:;�
I
I
-
--
I�
--
I
0
,
�
0
1
,
�
•
-
..., ""
'
--s
0
0
10.
·v
The final procedure of chromatic
harmonization of a chro1na.tic melody consists of
isolating the melody, placing it above harmony and
melodizing the remaining 3-part harmony with an
additional voice ..
This additional voice is
devised according to the fundamental forms of
melodization, i.e. it may double any of the
.
•
functions present i n tl1e chord, or add the function
next in rank.
•
In the following example .'the notes in
parenthesis represent such added voice. The
functions of this voice are:
g
•
b
a
-
ll
.
J
f·
i.t,
-
;•
•
....
�
I
I
;.:
I
�
C
d
i::;.
V
-
9
13
5
b - 9
e - 5
b - 7
g - 7
7
a - 7
I
•
'
I
•
r
-61--!
�
,c
I
,..,
'
•
I
�
-ti
• -E6
,
-
e
- 1.3
C -
tF,,
..,
i::;.
�
•
T•
�
,_
-
I
•
-
'
.I
::;,
I
-• I
i
�
(
•
�
.
'
-
•
�
I
•
, .-
'f
~lr;.
: ��
•
l
�
•
•
,
l''J
,_,
--
�
,
0
0
11.
8 . Diatonic harmonization of a
chro�atic �elody:
A chromati c melody may be diatoni cally
harmonized when it has a considerable degree of
animation ( short durations).
In such case some of
the to nes are chordal functions and some be come
.
•
•
aux iliary or passing chromatic tones.
The principle
of assigning the fun ctions which are supposed to be
diatonic, must take place in this case.
The following example is th� melody
which was used as an illustration in the preceding
paragraph and only used in its most animated form.
lJ
Figyre XXIX.
By assigning
C - 5
\
we a c quire F chord.
d - 13
a - 5
In the next bar , by assigning
we obtain D
e - 9
g - 1
chord. By assigning
we obt_ain G chord, and by
a - 9
•
assigning b 1 - 5 we obtain B and E chords .
Thus,
the entire melody can be placed into a certain ·
I
0
0
12.
0
desirable key (C major in this case). The units
�
�
.
a and c in the second bar are auxiliary tones to
•
the third and fif'th respectively of the G chord.
The entire harmonization has a Phrygian character.
Figure XXX.
•
•
-
I
1ft:
•
u
�
•
I
�
'-
-
.
�
,.
�
+-
,�
•
-s
-�
-
-
�
•
•
.,..
I
�
�
"'
-g
I
same melody .
-
-
I
""'
Another example of harmonization of the
By assigning the following functions
we obtain another harmonization :
C -
e - 13
5
d - 13
•
g - 5
Figur e XXXI.
D
.
�
p,;$'
.
fi
.
r
.
-
-�
.., �
.
-
f
rI
$
-
�
•
b - 3
a - 13
a - 9
•
•I
M
.
I
-
-
•
�
,:_• ,
-9
*
-6
.
0
0
13 ..
9. Symme�tic harmonization of a
(J
a
cpromatic �elody:
Symmetric harm onization of a chr omatic
melody is used for tne melodie� of long durations •
In most cases each pitch-unit of a melody has to be
harmonized by a different chord.
-.
The advantage o f
the symmetric method of harmonization is tha. t if a
melody is partly diatonic there is an opportunity of
using one c�ord against more than one pitch-unit of
a melody.
Any symmetric harmonizati on� as in the
·cases above, must be based on a preselected
u
L ��.
Let us assign the following � (13) and
use it for the harmonization of melody utilized in
the previ ous exampl.es ..
The important considerations
in the following procedure are variation of tension
.
and utilization of enharm onics as partic ipants o f
r (13) (a
',
SUjp.ements an equivalent of g
-:f
13th of a B chord) •
(please see next page)
0
for the
0
0
..
14 .
Figure XXXII.
•
•
, 1
,
-
�
-
•
�
•
�
1
- 1
•
.
5"
q
>• •
I
•
•
. i
'
•
.: =a
�� J;
r
..t
•
p'7
#.:
' ,a,
I•
r a
q ·5
.
.
,
-- ,-,
•
I
•
'
....._
�
-
.I
•
I
.
•
.
.
·1
'
•
Wtt
4:
,,
.
11
•
I
�
q
I�
'
.:
i�
..
¥Z
e
•
.
t,-
,
.I
��
-
'
•
Ii�
•
,,
-p
•
•
•
�
I
��
�
-
•
I riI*r•
I
�
� j�
- .,,.
-
-
-
::; �
.
�-0
..
�
.
J O S E P H S C H I L L I N G E R
•
C O R R E S P O N D E N C E C O U R S E
Subject: Mus,ic
With: Dr. Jerome Gross
Lesson CXXX.
MELODIZATION OF HARMONY.
•
Composition of melody W?-th harmonic ?�coru
pan���pt can be accomplished either by correlating the
•
melody with a chord progression or by composing the
melody to such a progression.
While the tirst �rocedure
is more commonly known, and attempts have been made
even to develop a theory to thls effect, the second
procedure has brought forth music of unsurpassed
harmonic expressiveness ,.
Many composers, particularly
the operatic ones (and among them Wagner) indulged in
composing the melodic parts to harmonic progressions.
So far as this theory is concerned, .the
technique of harmonization of melody can only be
developed if the opposite is known.
If melody can be
expressed in t�rms of harmony, i.e. as a sequence of
chordal functions and their tension, then a scientific
and universal metl1od for the harmonizaticn of melody
can be formulated by reversal of the system of operations.
The process of composing melody to chord
progressio11s thus becomes tl'1e melodiza_tion of 11.§1.rmony.
"
0
0
2.
Though such a word cannot be found in the English
\ dictionaries of today, we can be certain it will be
there very soon , as the discovery of a new technique
necessitates the introduction of a new operational
concept.
This �heog of Melodization will be applied
$
•
to harmonic progressions satisfy ing the definition of
•
•
the Sp�cial Tl1eon: of J-Iarmony:.
•
According to this
definition all chord-structures are based on E, of the
names
seven-unit scales contai ning seven musiGal
. without
'-
identical intonations.
Thus any pitch unit of melody
can only be one of the seven functions: 1, 3, 5, 7, 9,
11, 13.
C
These seven functions produce the man ifold
which we call the scale of tension.
By arrangi ng the
scale of tension in a circular fashion, we obtain two
harmonic directions: the clockwise and the counterclockwise.
•
Clockwise functioning of the consecutive
pitch-units of a melo�y neces§�tat�s the p9si�ive
•
..
0
0
3.
form of =tonal cycles.
= •
r
Counterclockwise functioning of the
pitch-units of a mel99¥ necessitates
consecutive
-
the negativ.e form of ,tonal 9ycles ..
Assuming that all pitch-units of a
melody are _stationag and_ identi.cal, and therefore
.•
-
could be any pitch-unit that is stationary, we shall
By assigning the clockwise
choose c as such a unit.
functioning to such a unit, we obtain the positive
form of harmonic progressions.
Melody:
Chords:
1
3
5
7
9
11
13
1
c + c + c + c + c + c+ c + c
C + A+ F + D + B + G + E + C
By reading the above progression backwards,
we obtain the negative form.
Omission of certain chordal functions for
the consecutive pitch-units of the melody will result
in the change of cycles but not of the direction.
Melody:
Chords:
Likewise:
Melody:
C
Chords:
1
C
+
5·
9
C + C
+
13
3
7
C + C + C
11
1
+ C+ C
C + F + B + E + A +D + G + C
➔
l
7
13
C + C + C
5
+C
11
3
9
1
+ C + C + C +C
C + D + E + F + G + A + B + C
Cs-
c,
0
0
It follows from the above reasoning that
every �hord has seven for�s of melodiz?tion, as
1, 3, 5, 7, 9, 11 or 13 can be, added to it.
The reduction of the scale of tension
decreases this quantity respectively.
We shall consider all the reduced forms
.
•
of the scale of tension to be the ranges of tension .
When each chord is melodized by one attack (or one
pitch-unit) the range of tension can be entirely
under control.
The minimum range of tension possible
can be acquired by assigning only one chordal function
to appear in the melody.
Let us assume that such a
function is the root-tone of the chord.
Then if
harmony consists of three parts, melody will sound
like the bass of progressions of 8(5) const.
For example:
Melody:
Chords:
2c1
+
c,
2c 7
c + f + b + g + c + d + e + • • •
C + F + B + G + C + D + E + • • •
Figure I.
•
C
+ Cr +
0
0
•
5.
C
It is easy to see that the pattern of
•
melody in such a case is conditioned by the cycles
through which the chords move.
The predominance of
c7 produces scalewise steps or leaps of the seventh.
Other cycles influence the melodic pattern accordingly.
Now, if we assign any other chordal
.
•
•
function (still one for the entire progression) , the
resulting melodic pattern does not change, but the
form of tension does.•
This time we shall take the seven th to
melodize the same chord progression.
Figure ):I._
,.,
•
-•
1
•
1
•
-------•
The different ranges of tension produce
different types (styles) of melodization.
Music
progresses cloc kwise through the scale of tension.
A narrow range, confined to lower
functions produces more archaic or more conservative
C
styles.
The resulting melodization may suggest Haydn
0
0
6.
or other early forms (in wost cases sueh styles
later become trivial) .
Whereas a narrow range
confined to higher furictions results in melodization
suggesting stylistically Debussy or Ravel.
The
intermediate form may produce Wagner, Frank, Delius.
Wrien the entire scale is used as a range of tension,
the resulting melodization becomes highly flexible
in its expression.
•
•
•
'
•
•
•
C
0
0
•
7.
C
Lesson CXXXI.
•
I. Diatonic Melodization
As it follows from the preceding exposi
tion, any chordal function can partici�ate in melo
dization.
The only necessary step which follows is
the assignment
of chordal functions for melodization
•
•
•
with regard to actual chord-structures.
-- as H.
We shall express melody as Mand harmony
In terms of attacks, one pitch-unit
M
assigned for melodization of one chord_' becomes H = 1 .
Under such conditions it is possible theoretically to
u
evolve seven forms of melodization.
For example, a C- chord can be melodized
by c (l) , e (3) , g (5), b (7) , d (9) , f (ll) and a (13).
Figure III.
•
•
•
•
•
.. .
I
0
-
0
0
•
a.
It is easy to see that the majority of
pitch-units of M are satisfactory.
Two of them
(d and f), however, do not result in a satisfactory
melodization.
The reason for the latter is that -
high functions, without the support by the
immediately preceding function in harmony, are not
acceptable .
.
•
Likewise, the presence of lower
functions in the melodization of high-tension cl:1ords
•
•
satisfactory
The 13 is fully
'
is equally inacceptable.
as melodization of 8(5) because by sonority it
converts an 8(5) into 8(7) .
Now we can construct tbe table of
L
melodization for the fifth voice above four-part·
harmony, where both melody and harmony are diatonic.
•
Figure IV.
Table I:
M
7, 13
5
1
s
S(5)
9, 13X)
.
I'=
1.
5, 11, 13
5, 13
5, 11
5, 9
13
7
9
11
13
5
7
9
9
11
3
7
7
7
1
1
1
1
8(7)
8(9)
S(ll)
3
1
S(l3)
.
•
•
0
0
9.
It follows from the above table that:
(1) classical and hybrid four-part harmony can be
used for the diatonic melodization;
(2) all chordal tones actually participating in the
chord as well a s the functions designated as M
can be used for the diatonic ruelodization;
•
•
•
(3) by diatonic melodization we shall mean the
participation of pitch units of one diatonic
scale and fnom which the chord-progression is
evolved;
(4) the use of 13 in 8(7) is acceptable when the root
of the chord is in th e-bass (i.e. do not use
inversions);
(5) the alternative in selection of functions for the
melodization of 8(13) is due to t\vo forms of
structures covered by the branch of hybrid four
part harmony.
Assuming that there are on the average
•
about five practical pitch-units (functions) for the
melodization of each chord through the form
M=1
,
H
the number of possible melodizations of one harmonic
cor1tinuit·y (under such conditions) equals 5 to the
power, the exponent of which represents the number of
chords.
Thus a progression consisting of 8 chords
produces 5
L)
B
= 390,625 melodizations.
•
•
0
0
10.
The two fundamental factors in deter
mining the quality and the character of melodization
are:
(a) the range of tension;
(b) the melodic pattern (i.e. the axial
combination of melodic structure)
The int -erest may be concentrated on
either one or on both.
Attack-interference patterns
add interest to melodization.
•
In the following examples�' R represents
the range of tension, A -- the axial combination.
All the following examples can be played in any
•
system of accidentals •
Figure V..
Examples of Diatonic Melodization
M iI
-
1
(please see following pages)
,
L
'
0
0
(Fig. V)
•
., .
,
:,
,
,,
..
-
.,.
I
...�
.
�.r
-e
•
,
LI
I
I
•
t
.
-
,
-
•
�
l:
•
-.,,.
•
•
-
..•
I
•
LI
•
c::
-
I
,
-
I
•
1..
-
"d'
•
�
�
-
I
.
..,
•
•
. .•
�
�
·7
I
•
·-
. ....
.
�
II
-
.
I
�
-et
..
♦
0
J·
-
�
I
•
•
r
�
•
I
-- -.
�
..
•
7
�
,
•
�
>I
•
'•
'•
1 .�.
·o
-� . ..
.
••
..,,
�
•
•
(J
•
. ..
••
•
R.� ➔ ..:. !'; A : a.,
•
•
-
•
•
•
.. ,
•
•
-
0
0
0
12.
(Fig. V, cont.)
R�
'
i -,�-
A:
•
QJ-t-�
.
•
.
1:,
t -11·J
.,.
":. 1
I'
A : Jr-tw,
·
•
•
•
..
•
•
•
;,,,..-.. •.
•
.t��:-,
- .":
Jl.lt(�Ry �-�'-'.. ..- .. .
9,�
-11.
. "'
•
'
•
u
•
•
•
•
,
•
I'
•
'
I
•
•
,,,. •
•
•
•
-
'.
•
0
0
13.
u
Les.son CXXXII.
The increase of the number of attacks
necessitates a slight remodeling of Table I (Fig. IV).
Any higher funct_ion can be supported. by the
,immediately 12receding function of immediately:
preq_edi:ng rank.
For instance, 9 can be used for melodi-
••
zation of 8(5) providing it is immediately preceded
by 7, and the root of 8(5) is in the bass (the
•
necessary condition for the support o� 9).
same reason 11 can be used for
For the
melodization of
8(7) if preceded by 9 and when 8(7) has a root in the
bass.
Figure VI.
•
Table II:
M
H
-
2, 3, 4, • • •
Additions to Table I:
7
➔9
9� 11
5
7
5
3
3
1
1
8(5)
8(7)
.
0
0
14.
•
Fig�e VII.
Examples of Diatonic Melodization.
M
2
If
i
I
'J
,
3
ll"'"r-41..,__-,---+--- ....-.--..__...__
,l
•
r ��
5
'I t?i 'I '
'i
'1 I
,_
.......---.�--
-' ...
•
. '•
•
•
r
As a.,
7
'l . ..,..
�
•
•
e
s· 7
.-
•�
•
...
l "'
,
I
5 t l Il
,r
.
7
.....+
..
� ..
•
•
,,.
...
�-
l
:it··.. .,,,
(cont, on next page)
L
1
J
--+--+--,...---,j�-- r--,-.�-t--t--r-,--..r--n-
. )
•
1-�
•
I
,.
..
'
1
J ,I
•
I
•
A:
-t 3
,
7
4
•
•
,.
.J.-
..,
·-
T
0
0
15.
u
(Fig. VII, cont.)
-
-
•
.... p
'.
..
l
I
.
.,.
.. .
�
I e,
I
•
•
I
•
-_,
I,,
-
.�
t
II
I
-·...
-
...
... '
'
•
I •►
•
!
j
I
•
•
• ••
-
!
•
.., '
•
.
'�
II
+·
�
__
•
•
'
•
.
II
-··
'-
1
I,,
�
I
•
-,::.
'
(
•
•
I
r-
!
•
•
z:
•
•
..
J
-•
' .,.
...
�
�
,
••
.,.
-l
I
I I
II
.
•
'► •
I
'I,,
,..
t +-�
.¥
....r..
I
•
!
.,.
!
,
.. ..'►
...
•
....
.,,.
'
I
I
•
I.
I
-
..
• •
-·
•
;� ·c:
'�
;:
!:
. .,.:
�;
.
-
..
.
I
� -
I
I
•
I \
f
\
•
With the further growth of the quantity
of attacks of
I,
greater allov,ances (particularly
in the fast tempi) can be made ..
This particularly
concerns the use of unsuitable functions for melodi
0
=
..4-
:
.
I
""
zation, when such functions are used as auxiliary tones
i:
0
0
16.
mov_ing int9 chordal tones, actually present in the
harmonic accompaniment.
Such styles of melodization
(particularly in the harmonic minor) can be easily
associated with Mozart, Chopin, Schumann, Chaikovsky
and Scriabine, i.e. with the sentimental, romantic
lyrical type.
•
Figur e VIII •
Examples of Diatonic Melodization.
M ii
•
C
I
]
J
'·'
"
8.
•
•
•
•
I
d
,:;;;,
'
.
-
:@,
••
t,
*·
.
•
•
•
(
.•.,,..
.
3
•
.
j
'
,,
I·
.
•
-6t.
-=IF.
'
•
•
••
•
•
r ,.
•
•
t7'
-p:
r•
-tr'
I
(oont. on following pages)
c.
•
•
•
•
-Ir.
..
'
"".
I
I
=f
�-
0
0
•
r
Q
•
..
j
�
.
'I..
"
. • :g
1,1
'
�·
'
ti
---
-
�
•
1z •
l'• -
'
•
:J
=
"
t
"
....r
r.
C
:I
?• '
c, ••
�
•
� •- -
_.II
. ..J
,
.. •
]
•
r
�
•
--
_. •
--.
R � a;
'.t:SlC
'
.
..
�
■I
.,_ -
=-
-=.
�
.
c::. �
'
'.
.:_
�
C
��
·�-
'
.I.
J
,_
-!'""9
�__¥:,
{I'
-
'
,r
.
•
"'"'
�
+-
.
'-
�
..
.
.,,..
A
•
.
A -
,.__
�
J
�
�
,-
.,..
�
�
';;I_
,,.
...
'1.•
a;+t
�
�
•
� ��
�
!
+
�
..
•
•�
r� r
.
=--=-·
•
•
.
.Q ..
,....
•
-�-r-
I
'
0
0
B 1/l{RR
-
'f..E.S
PAR�LLEL
t
.
-
-
I
.,,.
�-- +-
•
-
• •
!:
t
- f'l
.,
]
!�
,_ •
•
t
•
•
18.
•
J
•
- ]
-
-�
- •-- -
•
I�
.0
■..I.,
I
•
-
•
•
•
I
�R:
..: ..L
.
.
•
•
J
,.
•
•....
•
J
•..
•
""'
- --- •-
I
j
... ...
�
t
•
'
- .....
�
I
.,,.
---
• ,---
�
-•
•
'
•
••"'"
'
,.
i,. ·-
•
'
.
--
.... .- ..
I
...
•t ... t
�
�-
I
-
�
�-
'--c
•
,
1wo- �,.."f"�U. ?R.,--'f"ER.�
-
•
�
t
J
�I
c·
-
: ,.
-
'
•
-
•
t
1
I
I
i
I
•,..
I
l
•
I
.L
I
I
I
-•
�
.
I
I
•
•
I
-.. .il
... ••
�
•
I
•
+-
•""
•
•
•
I
-
•
•
+
I
I
.
0
0
•••
I?I kitI
C
•
•
19
•
•
...
•
-.. ...
...
-
•'
- - ...
:
••�
-·...,
•
I
I
'
..
•
•
I
I
•
I
�
,;
.·
:t=-·
.
•
I
•
Examples h'f n1awn1c Me1oa:1zat1on
•
I
�
-
•
I�
I
-
,..I
.
■I
..
.. .-
-1►
,.
-
'•
.,.
'I
J
,..
-
I/�-
.
/?
-
'·
...,
•
"
-
'
,-y
--
.+
t.
.I
,I
••
•
"'
a..,
"'
'--�- :...
=
•
••
-:e:-
-
jg
-
---
..-
,.
+
j
L
c;.1
.,_,..
.
-
•
-
,-y
-e- '
-8-
0
$
....
--
-
-
.,,.
�
,.,
-
I
•
•
0
-
r-Y
...
•
-
J
,�
r
'I
t
11
V
..
-
•...
•
• +·
•- ·►
.
r,I
••
... •
•
.
-
�
. .,,.
t:
-
-
,.,..
....,.
H = 4
-
Y-
·o
()
,
..
'
'
! I•
•
-
·-�-.
• ...:
...
'
f
-..g.
....
I:,
.
•
•
()
�
...
- ·.. .- ...
.
... • ... ....
'
"
.,.
-
•
..
-
•
--
•
�
•
,,.....
•►
-
�-e-
-�
0
0
" ::: Jr
• _:t: L '._ •
I I
I I I
....
.
.
L.
'
I
(
•
I
•
,�,
J
'
:
f
�
-
.. .· ·-•
• ••
.
.
I
•
•
-
•
.
.. -- .,.
•..
• ••
J
-
•
�.
•
T
I
c-
�
20
•
,.,
0
•
.
·:,
-
I
�
.
ij
'"
,�
•
-
.
•
L
..
•
i.. • I
•'.
.. ....
"' .- ..::. +-�
•
,►
I
.,
.
-"
I
I
.
•
•
..
!
..
.� .
.g,. ,.,,.
¾, -8-
I
I
0
0
21.
L
(Fig. IX, cont. )
-
.. ..... '-,
.. .....
:
.A
•
•
.. -
E$
... L ,.
•►
�
,1-
l
It
I AR.
►
'
'- ■- -
I
•J
........
•�
•
I
...
...-+
'
•
•
I
•
'
•
�
....
,,
t
...
111.
�
•. I
�
'
► I!.
....
,,-
-
,
•
-
•
•
_
•
•
.
..
A1'"""'R
-
...
I
I
I
. '�
-,
I
I
_j
�
•.
I
..L '
•
iiH-RE:E -
'
�
•
•
,_ . ... ...
.., .. +
•..
-::J;:1-I
.
. r
•
.
• ••·
I
...... ..... ...► ·-..•..
•
'
I
I
.. -..
•
'•
•
-•
.
'
1:..
..:·......
+
.t
I
..
l
-
'
,
..
I
I
,_
-·
•e..
L
I
.
•
t
;•
• · ' lf
•
.....
.....
.....
•
•
I
,_�
J
'
�
,i I
,
..•
I4
•
'
•
I
•
..
•
J
•
-
1
-
•
f
•
�
I
.
I
-
-
--·•...
!
•
•
•
7'��
•
I
.
•
4- ,...
•
•
..
.
•
L.!
,.
... ...
•
--
0
0
22.
Lesson CXXXIII.
Fig:ur e X.
Examples of Diatonic Melodization.
-MH
.
•
llfAit
I
•
"
.....
(
I
•
I
•••·6
r. "'
.
I
•
5.
•
r I
'
•
-
f
·- -
,'
•
I
,
,.
•
.
�
•
ct
�
]
•
-
�
•
[
ri
.. ' '"
..
•
•
•
•
t
,_
1•
.
. .
(.:,• � . ....�t'
.
-t
�
.
,i
•
..
.
•
�
I
.
•
•
•
..,. l'I',
''I,'";t;-'
.
..-�
,
C .J
l
...• .,. .l
�-·
'
•
•
�• • •
... t-.....�. · . ··...�
---�
=
..... . -
....I,..
-
•
•• •
�
�
•
••
.. .,..
.
,
'.I
l'
�
I
-:
-6-
.e,
(cont. on following pages)
L
/
0
0
I
.,
'..
.,5
.
i, ,
�c:.::
��,P•',
--.ll'.l•�
IV
"
r .. ,_
•
.,,,,
'"" I'i
-e
., ��.:-�
"-'• I..._1!1'
- ' ,_,
•
'
'J ..
-
�
'
t
•
]
,�
II
t�
II
I
'
I
♦Jf!
-
�--
-
..t._'.: .,..
I
I
-
- ..- -
�
I
•.. I
•
..
�-
•
'
-- -. ~-
-+
'
... ...
..
-,,.
- - .-·
'
-�.
• •...
I
!
---
r:,
�
�
-�
;.l"'r&
I�
I •_ .,.
0
-:!:
..
'
-· ·
--�
�
-
-·'..-� •
-
-�
•
-
j
.
.
'�
- •..-
'
•�..!.-►
-
j
••
:
...:.:1:.
� '
.....
I
I
--
"3'
�
-
t .,.
•........ ..
!.
'
.....
:'�
:5'
·-- j
'
J
J
•
.
•
::
i:
.....
,, •
I
- - -"
...
..
""!>r.,::;r-
I!
•
• t......
•
"
--
�
I.J'
�
.,.
!. �
,.
-
�
I
,1
-s
+
r
..., s
-�
-'
•
23.
•
I
I
•
..
' ••
·-·
!
'I
-
.
•,.
.
•
•
•
-
-
',
•
I
�
�j
::-no
••
•r"
::..1-Jt
·-
•
'LJI'
I
•
Y.
I
..
...-
..- -
'� ' I
I
-
]
- •►-
..
;.,,
•
I
I
.. �-
-
0
0
'•
I']
•
I
'
,
,,
.
!::
'
!�•
•
E
-
I
•
•
•
•
I
'._
It
--
•
I
I
I
I
J
\
•
I
I
Fi g,urEt XI,
•
I
I
II
I
I
t
!
.
:i
•
..
I
I
[
•
j
�
24 •
1
I
I
- 6
I
Compare the following illustrati ons with Chopin, when playing in
C - minor .
-
I
..
•
�A
-�
I
I
-·
-
-r -
·�
I
'
,.
I
'
I
"'
•
.
...--.-
r_.,
,_
-5
.
!!!!:
-
'
r •
• •
'
.
-e• .
r
.
...
'
'
--
�
-
Sii
...
1• •
I
: . -•-·•
.. .
.
�-
.
1·
I
�
�
• •
�!.•119
'
•
• •
•
I
-
•
-e,
•
...
•
-
z
-
[
.
V
I
-
-
--
•
..
....
..
::;;. •
---
T
'--
j:::J
-.- .
+·
•
•
]
�
--.
•
--.
'
. -r
•
"' •
'-
rl
' •
�
r
,•
•
�
•
-- . .
of;- .
I •
.
... '
.:. .,-
•:= t
[
-
-
-el
.,_
•
I
'I
--
-
I
.
•
[
'
iiiii
--
�
+I
C•
�"7
•
I
'
•
e:xamples or n1aton10 Mel adizatlco.
'A
L
.
(
'
I
(Fig. X, cont.)
.•.. -- ...
◄
•
[
�
I
•
.
�
-
,
�
•
-
I
r
'
�•
I
• $i
•
••
�----
!
, ..,,
-·
' .,
(J
:t-
,,-,•.
.
-
;j·,
•
��
•
..
•
.
0
0
-
r
i
•
.
-t.
-
;
•
�
•
-'►
.
-
I
-
--- ,f;iili
.,,.
•
� .:t:
�
�
-► �
- ..
'-:•"" '.
.•
�
.. .......
•
•
•
•
'
•
'
!
�
.
•
....
•
..
�
..:
'
..... ....•
a
•
'
'
•
•
:Si
25 •
...
- .. •
••
'
~
,...
-
..
z
�
'T
.
•
4-
�,
•
.
.
••
.
◄
- ••
,___ .,.
I:
•
e
,..
'
'{
'
!iii1
•
...
'
.,. .L
..
•
•'� I'.
�±
�•
- ..e.
..,._
p
'�-
-
•
•
•
it�,iRf l.OtJtJ�R.�\lt; - !)IVi:.R.�lt-1�
.... '... .L.
'
''
,
••
I
••
..
L
Il'C
\•
'
,
I• .
''
-
�
/r
-
�·I
.. i• .l
•
:s.
I
I
J
-
"
l
-
I
•
I
!
-I.. - •
!
,
,.
,
•
I
�
I
I
.
.. .--.
...
,·
-,
T
I
•
)'--
I
I
.--
... .....
-
i
1
•
•
.
'
..
•
[iii"
Ill
-� ·
-
1
•J
'
•
'-
1
1
-
.t.. ... .
..
I
-
.:.
•
..•-·
•
-.. .·..._ __ ,...
� -�
---
I
JH
I
'""
-
'
i--.
-
'
...."" '..
�1'�$
,
•
•
..
'
0
0
-
Fi@!'e XII.
Examples of Diatonic .Melodiza'tion .
I
�
•
�
•
...
�
•
.
.
e
-
V
•
....... '"' ... ,.
•
.,. •
;
•...
'
•
•
..1 r,.
.
•
·-•
-
.
--
�
-
•
. , +· •· ..,.
• .,
.
'J
�
-
"
;:
,.
•
•
• I',
•
•
',
.
,,
II -,
,.
•
!
.
II
•
.
.
�
·i
•
.
I
•
.
...
•...
j •
. .
..
•
�
.
....!..
..
f
•
'
•
•
•
��
I I
•a,.
�
,
-
•
0
.
,.,
..
.,.
•
I
•
•
r-
!. . )
•
=F
I
-:::s .
�
..
L'...
7
;.
...-
+
I
.
-
.
•
-
•
jI
'
.
.
';.�
•
�
'
-
• •
. '
�
.
-fl- •
.
-
. .'-
.'"" .
+
•
.
•
-·
r
!
•
•�
..
-�
..
...
JJ
..,_"
.
:•
•••..:..
---
'
"
. ...
.
,
.
-
.
.
'
.
••
•
I
-
....
•
.
,
... I
---�
•
'
()
. '..
•
.
'== -
I.J
--
!
-
. .,
�
•
.
.
'
-
... .. . ....
•
.
\
•
'-
.
.
"7
LJ
.
•
�
�
'
'\ I•
�
�
',
I
'
.
rI
.
,.�
-'
•
.
'
r>
0I -
'
•
r'
- l '!l 1 (f
.
.
-
•
j
--
�;
L
•.,
..
26.
•
-
•
F�
,.
..
... •
•
.
.
-
I/
•
7
H
.
•
1'1.
M
•
•
!
+
•
..
77
II
.
..
• •► .•
•I
•
-
!
.
�
•
•
0
0
-·
,
• •
-
•
•&
II
....• .!--. -:-----�
•
(Fig. XII,
.,.
,
'
..
--
-
-
•
'n-
,
•"
co11t .)
,
"'
•
27.
•
•
L.
-
I�
-A
.
•
"·
.
... ...I ....
•
•..
�
w
J
-
,. ' •
" .
.
-
",
.
It,-'
..•
•
!
J
I
r
i
,a. •
- ... .-- ..
I'
•ioo
•
loo
'""
. .e..
• .,""
- •:
•
•
► I
-
I
I
�
'
•
•
•
'�
'
�
'
�
,
e
•
-•
,
....
••
J
'
.
.
5l
-
,,
-M --
4 ''"".
\i
r:,
'la
..... •
G
"'
l
•
•
.
,I ,.
'
,
-
•
.
•
.
•
j
.
�
•
•
-
.
•
.
.
V
.
..
•
�
-
-
,
-
.
• ...,,
�
..,
"
..
-�
!
-
1
1.
'
;,
-
'
I
Q
•
?, •
,
.,,
•
•
'
I••I
•
I
•
jjiil
�
.
I'
,�
I
-
£§ _
... . .:..
•
•
r
"""-Ir
.
.
I
rI
•
.
.
ai1d
•
,
�
..••• ••..- ••-.. ·-
.
.
""'
[J
,I
•
8.
i'
.
-'
(
•
..
Iii
_,
.
H
llustrations.
.
..
skrres) wi th jaiz
-.
I
l,,,f"
'
f.
c·
series) in the following
• ....
•
''•
Examples of Diatonic Melodi zation.
•
.
_..
..
•.. --- -
Figure XIIi.
•
.
•
•
•
--
]
.
•
I
•
...
I
I
►
�
'
I!
f
..... .
.. .
'
I
'�
-•
L!:
!
:.i
..... .- .
...
'
]
�
..
•••loo
•
J
I
.,,. -
I
.
.
.
.
,
"
-
-
.....
.
•
.
·-
.
.
.
.
,
.
·c
I
•
-.
,
..)
.
••
•
�
-
0
0
·�
\..._
.
!
..•
•
•
--
n
J
-9
+
�
-
•
-
-
••
.
•�� --,...
"o
-- ..
I
•
-
-
.
-,r· -
.
•
''
-
.
-
:i -
.
-
�
•
-c
,
CJ
�
•
•
�
'-
.... -- ·
..
�
La-
'
-- ·-
•
'
.:_ ,...
•
•
,. II
.- .•
.....
•
•
--� .
•
.,.. '
I
• ••
•-I •.. •••·••
;it
•
'
-·•• =- ... •
-
-·
. .,.
L
I
•-
•
I
-.
'
•
•
.
iiiiii
-
'
-
.
,,,,. ' ""
'
--
'
.
--
.
-I
•
-
-e;-
-
--Ir
,
·i!
::&-
I,I
'
[
..
•
,
.
.
-
•
-
I .,._
.J
'
.J
•
--
I
-- I
r
llliii
-• '
•
'
•
•
'lJ
.,,.
r
s;;i
.,.
..
28 •
c
•
J-..
ii
.
!. .,..
!...
.
,I
.. -- -
�
-
•
•
t
-e,-
T.
J
-============================================::::================================
'
'
-
.
.
.
•
•
•
•
•
0
0
-•
..
I
I,
P6"
''1
•
�
,
iiiiii
'
•
,
•
.-
'
!•:....: .�i:.
ii!!
·='
.
... ....
•
•
'
•:
� �
�,
�'
...
"'" '►
•
'
•
•
.
I
·-
•
.�
..J
'
--
I
•�
I
l
-·-. -� ...
'•...
I
I•
'
... •
I
•
'
'
•L •
-� ...
'
I
- .-
•
I
'
I
.
-
[
"
•
-·- '
•�
-
:i
•
•
,·�
-•
II!!!
--
c.,
6
-
I
z
•
J!
I
•
!!.
-
I
I •..
-
.
'l
....
- ·-
f
'
•
I.
/'"l,
,•
-
I
- • ...
•
'
.
12
.
:-,
.
I.
I
-
'
-
l
'
I-
�
•
t
..........
i
,
•
-I
I
I
I
H
'
�
-
::g;'
-
!!.
I
M
I
•
•
-I ....
•
...._
le •
'
···-• l
'
•
'i•
-
'
•
•
:-ii
l
•
•
•
'-:
I
Examples of Diatonic Melodi'zation.
'.I
• IJ
•
r..,..,.II.
-
�I
I
l
..
Fi:e:cn·e XI'I·,
•
•
-
•
•
!
•
•I,
•
'
l►
.¥
-�.!.. .-
[
�
q
•l"r.
•
.
•
..
.
..
.
..
:�!:::
.
�
.
...
•
•
•
•
I
.
- .- .-
l
J
,
......
: ..·
..
••
!!ii
.- :1:.
I .
jjilllL,
'
•
J
I
'
�
!
I
•
I,
..
---
'
•
•
...
.
..... --.,:.,- I
•�
•
-
•
,
'
-
.,-
•
]
I.iii
'...
••
T'
' I
•
,
�
I .,..
I•
::::(
29 .
-
l
;_
��
�
I,
.
0
0
...
-
•
L
•
.
.
I
r-.
•
•
-
•
�
•
-
-... ..
•
�
.....
•
.
.•
•
..
•
�
I
f
-
..,_
-
-
'
•
..
-�
•
•...
..
�-
-
•
I ...
t
..J
�::!
'-'
.,.
.._
�.•
-
'
•
.'
�
�
-
.
.... • .... ::: .,.. .
-.
-
•
1S' I
-- ..
-
•
•
-
....
-rJ' .
�.
,
-I '
.
..
�
.
-
.
,
..
.
'
--·
\
.
�
�
,
.
.
......
•.,. I
-
+•
•
,�
•
•
7J
.
�
•• •
[
.
-..
-
.
'�
•
-
' -- .
••
·o
•
�
•
•
,,
"
a,.
•
i!!
-�
I')
•
'
,,
,
.,
�
,
.
..
. .,.
--er.
-- -
I
•
..
-
e.
• �·
·�·
•
..
•
ii!l •
�-
.
I •
I
.- •
.
-:er .
--
-I? ..
�\
-
tlll!l!!. .
---
.
rJ'
,
I
!
••
�
30 •
•
'
,.
T
•
lii
-
•
,
'�
'
�
-.
f
'
..
-·..
..
'-' I
r11l
.
I1
I
J ""' •
·-
•
•
•
�
.
.
-•
-
t, '
•
.
•
-� •
'
.
'
0
0
J O S E P H
S C H I L L I N G E R
C O R R E S P O N D E N C E
C O U R S E
Subject : Music
With : Dr. Jerome Gross
Lesson CXXXIV.
Composition of the Attack-Groups
of Melody.
.
•
In all the previous forms of melodization,
the attack-group of M was constant.
Any assumed
quantity of attack per chord (H) was ca�ried out
consistently .
The monomial attack group (A) in all
cases was an integer remaining constant throughout
�.
L
This monomial form of an attack-group can be
f
as
expressed
'
one to infinity) .
= A, where A can be any integer (from
Now we arrive at binomial attack-groups
M expressed
be
can
This
.
for the melork•
as
�
2H .-
= A , + A 2 , i. e. melody covering two successive cl:1or ds
consists of two different ·attack-groups .
For insta11ce :
(1)
-! H -M
2a +. a ;
(3) . 2H = 5a + 3a;
.II
as :
. '.
.
(2)
-H
:H = 3a 1r 2a;
= a + 8a;
•
• • •
These expressions can be further deciphered
0
0
f
(1 )
= 2a + a;
(3)
=
The
(2 )
5a + 3a;
M + M
H ' R2
=
3a + 2a;
a + Ba; • • •
(4)
main significance of a b inomial attack
group is the introduction of contrast between the two
successive por tions of M.
The greater the c ontrast
required, the greater the difference between the two
number-values of a binomial .
This proposition can be
reversed into the following : the cont�ast between the
two terms o f a binomial decreases when �heir values
approach equality.
Thus,
than
M
2H
3a + 6a;
=
2H
2a + 6a;
2a + 6a is more contrasting than
3a + 6a is more contrasting than the least
c ontrasting 5a +. 6a .
obtain a monomial as :
that
= a + 6a is more contrasting
)(
With fur ther balancing we
M
M
+
H2
H,
M
1I - 6a .
=
6a + 6a which means
If permutation takes place in a binomial
attack-group, it results in the second order binomial
attack group.
•
For instance :
: = 4a + 2a;
H
this becomes :
4H
M =
MH,
in the course of H ) = 4H,
+M +
H2
MHa, +-�!H
'I
= 4a
•
+ 2a
+
2a + 4a.
0
0
•
3.
The above described method of binomial
attack-groups is true of any polynomials.
are sub ject to permutations •
Examples of trinomial attack-groups :
•
•
•
(1)
M
3H
(2)
M
3H
(3)
(4)
0
The latter
= 3a + 2a + a ;
14 + M + M = 3a + 2a + a ;
H2
Ha
If,
-
4a + a + 3a;
-HM ,
+ H2 + H3
a + 2a + 4a;
3H
-HM,
M
M
+ - + Ha · = a + 2a + 4a;
Ha
M
M
3H
=
M
M
-
4a + a + 3a;
M
M + 14 = 3a + 5a + 8a.
+
3a + 5a + 8 a ; H'
H2
H3
Examples of polynomial attack groups
based on the resultant.s of interference:
M _ M
6H - H,
M + M - 3a + a + 2 +
+ a
H,- H•
+
14
+ M
+
Hr
Ii.
= 2a + a + a + a + · a + a + 2a.
2a + a + 3a.
,
0
0
•
4.
(3)
r
9+8
M
16H
.•
Ba + a + 7a + 2a + 6a + 3a + 5a + 4a +
+ 4a + 5a + 3a + 6a + 2a + 7a + a + 8a .
The effect produced b y such composition
of attacks as ( 3) is that of counterbalancing the
original binomial: it starts with excessive animation
•
over H , (8a) and complete lack of it over Hz (a) ; it
f ollows into the state closest to b alance, after which
the counterbalancing begins, ultimatel� reaching its
converse:
a + 8a.
In all cases of ra +b the maximum
animation takes place at the beginning and at the
end.
When the opposite effect is desirable (minimum
animation at the beginning and at the end) use the
permutation of binomials (which is possible when the
number of terms in the polynomial is even) .
For instance: (3) can be transformed into
M = a + 8a + 2a + 7a + 3a + 6a + 4� + 5a + 5a +
16H
+ 4a + 6a + 3a + 7a + 2a + 8a + a .
In addition to resultants, involution ·
(power) groups as well as various series of variable
velocities (natural harmonic series, arithmetical and
geometrical progressions, summation series) can be
used as the forms of attack-gro ups.
•
0
0
For instance: ( 2 + 1) 2
:
( 1 + 3) 2
:
=
�
4
4a + 2a + 2a + a ;
:H =
a + 3a + 3a + 9a ;
•
2a + 3a + 5a + 8a + 13a .
For the time being we shall use the
simplest durati on-equivalents of attacks, as this
•
•
subject is a matter of further analytical investigation
(which will follow in the next lesson) ;
Figure xy.
Examples of Diatonic Melodization with
Variable Quantity of Attacks of M over H:
M
-
=
H
A var.
(please see following pages)
•
•
'
0
0
H
•
'
I
r•
�
•
liiii
•
•
•
...
'
Ao-
•
.e.....
...
.
-
6•
.Ml!!!!
It
.
.
-I
(
II
....
C
n_
,
r.J
I
•
..
!
,/)
A -- I
.'
11'1'1 - I
-
-fr
-e-
---
-
..
•
-?J"
,.
•7
.
-'
..,
-
•
r
-
-
I
•I)
·�
3t
-
r
-
J -,.
JI
I r.1
-
-
1... : Vf\R- £v ( l +-� + � 'P f'--'
,,,,.
,
I
■
�
I
I
]
-
")
•
:.,
.
--
'.
rJ
"
1
- 1
,,,
�
-.c
IW
'
+
7r .
,1
.
•
,
-
·�
T
,
.
I
IM:
I
'..
...
-...
#:
.. ,
-�
,..
"II �. ,
-
I I,_•
.,
f...
I
-
�
--
!
I'"\
•7
I.I
s.
c;,,
:ar
-
�
f
•
�
-
I
'--
•
--
•
... " ""
...__
-.
-
r
-
- -
J ,
-e-
?)
-
II
-e
�
";;ii.
-
••
r,
-
-z;
:§=,
�
J
7F
--
C}
t
lI
�
••
r�
rI
•
-
•
'?I"
JI
-
-+-
-
-
-...
]
•
�'
�
--�
�
,
7llS
0
-
...
-I
-
�
�
-
-,
t.
�
-
.
I
-
::;;;;;j- ,
--
...
--
,�
•
--
i'
...
.
•y
-�.
•
.I
•
.
0
0
..
7•
V
(Fig. XV, cont .. )
I
•
'
'
'
I
•
'1
•
.
•
Ties in the above examples were added after the
completion of melodization.
(
'-.,...
•
•
•
0
0
---
-
-
-
--
-
-- ---- - - - �
..
a.
•
Lesson CXXXV.
Composition of Durations for the
Attack-Groups of Melo�y.
Composition of durations for the attaclt
groups of melody can be accomplished by means of
technique previously defined as Evolution of Style
Every attack-group, monomial, binomial,
in Rhythm.
trinomiaJ.., quintinomial, etc. can be expressed
through the different series.
binomial of
•
3
3
4
4
For instance, a
series is 2 + 1 or its '' converse; a
binomial of
-
binomial of
8 series is 5 + 3 or its converse.
series is 3 + 1 or its converse; a
8
Likewise a trinomial of
4
4
•
•
series is
2 + 1 + 1 or one of its permutations; a trinomial of
f
is 4 + l + 1 or one of its permutations; and the
trinomial of
•
p�rmutations .
8
8
series is 3 + 3 + 2 or one of its
Selection of durations for the attack
groups through the different series permits to
translate a piece of music fro,m one rhythmic style
into another.
When a choice is to be made as to the
f orm of a binomial or a trinomial, the form of balance
(unbala nci ng, balancing) becomes the decisive factor.
..
•
0
0
Thus, out of the two binomials 3 + 1
and 1 + 3, the fir st is more suitable at t he
beginning of m elody and the second -- at the end.
•
4 series:
2 + 1 + 1
In the case of a trinomial in 4
at the beginning, l + 2 + l somewhere about the
center and l + l + 2 at the end.
Likewise, in
series: 3 + 3 + 2 at the beginning, 3 + 2 + 3 about
.
•
the center and 2 + 3 + 3 at the end •
Four at tacks
can be achieved by splitting one of the tefms of a
•
as a
Splitting of the terms serves
''-
trinomial.
general technique for acquiring more terms for low
determinants.
0
•
Examples of composition
• of durations
for the attack-groups o f melody where each term
of an attack-group corresponds to one cl1ord:
I
=
A.
l
A�
= a + b + c + d + e ;
Ao
=
a + b ;
A�
=
As = a + b + c ;
a
A )" = a + 2a + 3a + oa + 3a + 2a + a
Series:
3
3
T = 3H , + (2+l) H2 + (l+l+l) H3 + (1 + 1 + 1 + !. + !) H 't' +
2
2
2
2
u
•
0
0
10.
5
4
J.
d J jJJ
fl J D l J J J J
j ,
•
--.
U-1 t.1-1
Series :
i
Yv1 T
V1 •
¼
+ (1+1+2)H5 + (1+3)H� + •4H�.
i
4
0
S er1.e
. s:
6
6
T = 6H, + (5+1)H� + (4+l+l)H3 + (1+1+2+l+l) H� +
+ (1+1+4) Hs + (1+5)H� + 6H7 •
(Waltz or Mazurka)
Li
q'
0
0
11 •
S eries
. :
8
8
•
+ (5+3)H2 + (3+3+2) H 3 + ( 2+1+2+1+2)H" +
,
+ (2+3+3) ff( + (3+5)H_ + 8H 7 •
T = 8H
(Foxtrot, Rhumba, Charleston)
� i, 1 •
•
,....
1 · v1 ,
1 v 1 -v i
1 1
..--... ,,....._
u,
•
•
,--
1 · -v 't
0
•
Figure zyr .
•
.,
�. �., SERlE)
9
I'
�I
�
�
I,
I
I[
•
••
�
,,
•
,,. .. ,
;"')
I •
-- •
I• I
r
•
-II" '
.
1·
ft\lS _
I
'
•
•
�,. .
I'
r,/
!
ll,
'
-
•I
�.:•
'!:
�,:
' i:
IT
J
II
•
-(/J
,· ,r
-ti"
•
�.
"
•
•
•
...
�
.
•
t
•
•
�:
b�
-I
ti
r
,.
I
}
6.
I
•
•
I
I
•
-
�
C
a
-
l!!!!!:
�•
I
I
•
l¢i'
(l
�
IE
....
.•
•
-·-
I
-e
�
•
p.-
p�
,I
-�
�
·�
,�
�
'1T
.
-
I
0
0
12 ..
(Fig. XVI, cont . )
V
fO
•
I
f",•
Sl,t.1E5
•
"""'
I
I'
�
ti
•
�
r
••
�
·� .z.
•
.
.,,.
-·
I
-
-
�
{ -
I
•
�·.
I
�
.
I
•
�
•
-•
-•
•�-
t
,,,I
I.ill
-I
I
TA
i"-,-•
1
I
•
,.
-
m-·�.
.L
�
�
-
-"'
�
�
,.
••
+
ji
A
•-JJi
•
'
52
'
•
b
'
l:
I
•
�#- ',
•
•
-
•
-a •
.
�--c-----=====�'-----· -'--- --- - -- -. -- --- ---- --. I s��I f.s
r,.,
- '• 'I • ,-..
!·
.
•
•
I
•
I
:.i
.,.
.
I
I
.,
I
'
•I
•
�
..
•
,
�.
•
""-"'
--�
.I
-
•■•
I
,�
-8-
-
-- J
:i
.
�
�
�
••
g
-;;
-
�
�
0
0
13 •
The final and most refined technique
of coordination of the attack and the duration
groups takes place when the attack-groups are
c onstructed independently of T.
interference between the
As this causes
attaek and the duration
groups, the duration of the individual chords is not
conformed to bars or their simplest subdivisions •
•
We shall take a simple case for our
illustration •
Let us cl1oose A
+
2a + 2a + 3a + a + 4a
= r5+4 == 4a + a + 3a +
'
= 20 a .
Let us execute the dur ations as T
As T in this case has lOa and A has 20a, the
=
interference is very simple.
a A
a
1 (20)
2 (10)
= 16t •2 - 32t .
Let T" = at, then :
Hence, T •
NT"
-
32 -a 4
The duration of each consecutive H equals
the sum of dur ations during the time of attacks
corresponding to such an H. ,
Thus, H , corresponding to 4a, the dura tions
of which cons titute 3t + t + 2t + t, will last 7t.
Likewise the next chord, i . e . H 2 will last t as at
)
0
0
V
•
14 .,
this p oint melodization consists of one attack, and
that attack c orresponds to one unit of duration.
Here is the final so luti on of the case.
(1)
(2)
a
a
Ji = i + 1. + 2 + £. + £. + Q + 1. + ! =
1
l
1
l
1
l
H
1
1
T
M) _
= 4aH, + aH 2 + 3aH 3 + 2aH� + 2aHr +
T H
1+1+2 + L+3 ) + ( 3+1
+ !.
+
l
4
4
4;
+
2+1+1 +
4
+
1 + 1+2+1+3) =[(3t+t+2t+t ) H
, +
1
7
7t
2t) H + ( t+3t ) H J +
+ (i ) H2 + (t+t+
�
3
4t
4t
t
•
t +t
3 t
+ [{ !� ) H,r + (2 4i ) H" + {½) H ?
+
M
8
8
�
1 . r1
( t+2t;t +3t) H g ]
n
.11 J
r.r .
J . rJ
•
n
rJ
+
J P l.
0
0
15 .
•
'
u
Figur e XVII,.
•
....
,
1�,·=t
•
.,,
-
•
-1; .,.
L,, ✓
-
•
�
I
1
*·
•
. ...
�t,
-
)
.
•
�
I .
I� •
•
•
0
- ..
•
• •
-
�
•
L
�
•
... I •
.
I
.
-I
•
I
,.,.
I
,
•
-
.
�
d.
C:
I
...
....
I
,
,
I
•�.•
--9•...
t�
.:
,I
�
'
'-
..
---
l·
I
•
•
•
•
J
0
0
16.
u
Lesson CXXXVI .
Direct Compos iti on of Durations p9rr,elating
M�lody and Harm9ny,
Time-rhythm of both melody and harmony can
be set simultaneously by means of a proporti9p�te
distribution of §ur ations for a constap� guantity of
IIC
attacks of
I.
This can be achieved by synchronizing a
polynomial (consisting of the corresponding number of
•
terms, representing at·tacks) with its square, or the
square of a polynomial with its cube ,· etc .
For instance, we would like to have 4
attacks per chord in the style of durations of the
!
series.
Let us take a quadrinomial: 3 + 1 + 2 + 2
and square it.
(3+1+2+2) 2
T (M) .
=
(9+3+$+6) + (3+1+2+2) + (6+2+4+4) +
+ (6+2+4+4)
The above distributive square represents
The T (H) is the or iginal quadrinomial,
synchronized with the
8 (3+1+2+2)
distributive square:
= 24 + 8 + 16 + 16
Thus we obtain:
T
M
H
=
9t + 3t + 6t + 6t +
24t
3t + t + 2t + 2t
8t
+
0
0
17 .
6t + 2t + 4t + 4t
+
16t
+
n...,..1 '
-
M
6t + 2t + 4t + 4t
''fst •
8
8
Ir' ....,
.
_J
-
J . f> l J
-
C
M
•
J.
•\
0
-
J. i
_J-
C.
•
FigPr� XVIII.
=·t1
,
-.
•
"\.
..f'I
-JI
-· ,
�
�-
,. r
8
"
.
•
-
•
. .,.
-
:..,,_z
-
�
�
-
•
II
""
.
...
I
3;
r
-
-
-
a
�
�
-
I•
•
$=_
�
[
0
I
.
-
C
...
..
-
-
�'
'
Likewise, synchronization of the
distributive square with the distributive cube can
be used for melodizat ion of harm ony.
I.
0
The group of the
square furnishes durations for the chords and the gr oup
,
•
/
0
0
18.
of tjle cube furnishes durations for the melody.
T
T
M
2+1+1 3
H . = 4 2+1+1 2
=
8t+4t+4t
4t+2t+2t +
+
16t
8t
2t+t+t
+ 4t+2t+2t + 4t+2t+2t
+
8t
l8t
4t
2t+t+t +
4t
+
••
melody: M
4t+2t+2t
8t
+ 2t+t+t
+
4t
This produces harmony:
H
-......
M
d
2t+t+t •
4t
= 9H, and
= 27a, with constant 3 attacks per chord .
M
8
8
+
-
�
L J
J fl l fJ
d l J
9 4
0
H
•
Figure XIX·,
(please see next page)
•
•
•
q 4
0
0
1
0
•
•
,�
•
..
�
-
••
,
.,
��-
i.
,_
·�
I�
'
,I
•
•I
-
-6-
�'
"
.,.
I
�
•
...,_
...
.....
---
--o=
.
-
i
-
It
-e-
-e-
..
C:
I
.�
'
•
,
-
�
r -
-
(;/
�
�
,
I
_,,
r
,I
-
.
'
,,
4I
�
�
""'
15'"
.,,
=IF-
£j
•
-
•�
.
'
•
7
•
�=
•
..
---
.�.
--
� ..
.
I
0
?r
�
�
•
(;.I
:s
i
-:s:
r
-
-•
I
,.,
-8-
�,
'
'
?j
•
,
- ""'
...
lI
(
.
,,
-
�
�
,
,
-
�
'
...
,..
·-
.
....
,
c:;;
IJ
'
-
-
�
•
I
- --
?
-
t;.iiill
•
I'
-
(.7
+- It
,_
1
-
.-
t
A
,
I
I
.-
•
_I
-
"
'
'
I,
�
--
--
-
19 .
-
,".
.....
-
-8-
,.,
♦ L _,,,9
'
J
l
•
0
0
For greater contrast in the quantity · o r
at tacks between M and H ) , use the synchronized
first power group for H' ) and the distributive
cube for
•
M•
In addition to distributive powers,
coefficients of durat ion can be used.
.
•
For instance:
- (3+1+2+J.+l+�_:t-;l.j-2+1+3) + (3+1+2+1;+-1+l+.1+2+1+3)
6+2+4+2+2+2+2+4+2+6
.C
)
0
0
21.
Lesson CXXXVII,
Chromatic Variation of the Diatonic
Melodization,
It is mor e expedient to obtain a chromatic
melody to diatonic chor d progr essions by using two
successive operations:
.
•
(1) Diatonic Melodization of Harm9ny
(2) Chromatization of Diatonic Melody
The first is fully cove�ed by the
preceding techniques.
The second (chromatization) can b e
accomplished by means of passing or auxiliary
chromatic tones.
The most pr actical way to per form
• this r hythmically is by means of split-�nit_groups
(see "Theory of Rhythm": Var iations ) .
This does not
c hange the character of dur ations (wit h respect to
their style) but
merely incr eases the degree of
animation of melody.
Figur e XX •
Example of the phromatization of
Diatonic M.elody,
(please see next page)
0
0
22.
(Etg. XX)
r
1> 1 ?.10N \t ME.lOJ>\ l.A"llON -
o.
I
·�I-I
�
-
•
I!.
,
�
-·'• J-,_
�
i
'u
I•
�
�
-=
�
l llf1 II
.,
.
/
I,,.
II tJ ,_
••
�
'
•
.
., ...
I
LI
•
•
•
a:'""• ' ..
I
,
•
I
�C
-•
., - u ,
•
I • 11.
••
I ••
-t:1- •
�•
�
�:
-
I.
•
,.:.:,t '
•
,-
•
I
•
'
,_
.,
It
,
{.
�
.
�:.
-- •
I•
- ,-
�
'
-.
r.
, •
�
..l
�
�.
.1
,.
•
•
.�I-
�·
- '
•
•
.,
)-'9-,
L •
.
•
"
'
•
-
_t
•
,
.I
�-
•I
L
l7i'
--
�
--
•
,
j'.
I,'
lJ
•
-?
�
;
r
•
4·
- .
•
•
-
-
.
�·
a•
•
1S
-
•
I � •,.•
,
I
I
,
•
�:
•
I
e·
-
0
0
23.
u
The r: (13) FapJ1lies,
(Intr oduc tion to Symmetric Melodization)
Each style of symmetric harmonic continuity
(Type II, III and the generalized) is governed by the
2 (13) families.
Pure styles are controlled by any
one � (13) , while hybrid styles are
based usually on
two, and seldom as many as three, � (13) .
The c omplete manifold of � (13) fa milies
corresponds to the 36 seven unit pitch scales which
c ontain the seven names of non-identi�al pitches.
The � (13) are the first expansion (E,) of such
scales.
We shall classify all forms by associating
1, 3, 5 and 7 as the lower structure [as S(7) ] with
9 , 11 and 13 as the upper structure [as S ( 5) ] ,
eliminating all enharmonic coincidences, as well as
all adjacent thirds which do r:i not satisfy i = 3 and
i = 4.
These limitatior1s are necessitated by
the scope of the Special Theory of Harmony.
Figu;re XXI.
.
Complete Table of � (13)
(please see next page)
0
0
24.
•
(Fig. XXI)
r
R\111[
--
•
•
·E•. -e.=-
�8'.!i
p+
',
■I
.
._
I
.
II
"�
,
�
'
,
•
"
l
---
I
--'J' I\I
ft
--
�
�
�.,_
...
...
�
.. .-v
--
J,
•
PL· ..
�
V\ ll
XX2t2:
*
-
•
•'VI
-
;i:
.
�·8X2ll1
-�·
-�
---a
..
-
•
..
·-
r
�
�
" ..1
� 2.:5,..
'..:ft
-
'
!�
'
-
-
\I
�
:s
�l[L
ff
-
�
.
...,,
�::1
-
,., I
Ac
:f=.. :t=..
1
--
g---
,l°'ll 'ill II
-
0
0
..
J O S E P H S C H I L L I N G E R
C O R R E S P O N D E N C E C O U R S E
With : Dr. Jerome Gross
Subject: Music
Lesson CXXXVIII,
pymmetric. }.\elod,ization of Harmony:
.
•
Symmetric melodization provides the
composer with resources particularly suitable for
equal temperament ( '1:/2 ) .
Whereas in .the diatonic
system s ome chord-structures , particular·ly o f a high
tension, produce harsh sounding harmonies, in the
r
symmetric system both the chord-struc tures and the
intonations of melody are entirely under control and
are subject to choice.
The teclmique of symmetric
melodizati�n makes it pos sible to surpass the refine
ments of Debussy and Ravel.
And, whereas it took any
important c omposer many years to crystallize his
original style, thi s technique of melodization offers
36 styles to choose from when one
a time.
Y
(13) is used at
The amount of p ossible styles grows enormously
with the introduction of blends based on two L (13) .
Then the number of styles becomes 36 2
Likewise by blend.ing three
Y (13) ,
limit of mixing, we acquire 36 3
=
=
1296.
which is a reasonable
46,656 style s .
It is cor rect to admit that only about 4-
0
0
2.
of the 36 master-structures have been explored to
any extent, the rest being virgin territory packed
with most expressive resources of melody and harmony .
In offering the following technique, I
shall use symmetric progressions of type II, III and
the generalized form in four and in five part harmony.
•
The main difference between the four and the five
parts is density .
For massive accompaniments use
five and for lighter ones use four-part harmony .
When all substructures [S(5)
, 8 (7) , S (9) ,
'
S ( ll) ] derive from one master-structure [
L
(13) ] ,
they adopt all intona tions of that master-structure.
The easiest way to acquire - a quick orientation in any
r
(13) is to prepare a chromatic table of such a
matter-struc ture.
Ta.king <£. (13) XIII from
Figure XXI, we obtain the following table of trans
pos itions .
Figure_ X,XII...
•
•
•
)
0
0
I
u
Such a table is very helpful, as all
intonations for both melody and harmony can be
found for any symmetric progression.
Each
L (13)
being E, of a seven-unit
scale corresponds to E0 of the same scale.
The rest of the procedure of melodizat ion
.
•
is based on the same principle of tension as in the.
diatonic melodization.
The functions added to
respective tens ions of chords are the most desir,able
•
ones as axes of the melody.
Thus the axis of the
melody above 8(5) in four-part harmony is either 7 or
u
13.
Actually such a choice creates polymodality, as
0
S(5) d0 serves as an accompaniment to �elody which
is db or d� respectively.
It is pGlymodality that
makes such music more expressive.
The following is the table of melodic
axes for the respective structures in four and five
part harmony.
more than one.
In some cases there is a choice o f
Some of the forms are admitted
because there has been practical use of them already.
For example, 8(5) in five-parts with melodic axis
on d , (= 9) .
It is interesting to note that
L
(13)
XIII is used most of all, and that it is the most
ob vious master-structure, as it consis ts of a large
G
8(7) and
a major 8(5) .
)
0
0
•
u
Figure XXIII .
Table of Melodic .Axes in Relation to
the Tension of H.
Master-Structure : � (13) XII I.
-•
. .
c�...
--
:£
-
�
I
1l
'�
,�
,
,I
s (s)
.
�
,.
..
1�
5(s-)
·�
.
-
.
,
!> (5)
·;
•
.5
..
•
-
,.. ,-
-f ,�
'...
.�
-:
.I
S (7 i
u
- :i:
-
.
.
AM,
tL.
, :,
-Aaj
S 7 i ,W./ tL.
·�
I
�
i
UL
•
�
. .
.£
-
-
�
•
f
•
' .,..
' •'1
�
-
••
.
7
5'
h ..
• I•
•
:a::
ri "-
h rn1
'
" •,.,
..
_,, 1
-
p
':
-
',
,,
,
.I
-
.
•• -
-·.,
rL s
•
r,
5
.. ,
•
.
0
0
5.
•
(Fig. XXIII, cont. )
K
,
cl. 1
•
•
)
0
0
.,
6 .,
Lesson CXXXIX,
•
•
Using this "f: (13) we shall melodize
a generalized symmetric progres sion in four parts
.
M
in ff = a .
Figure XXIV.
--
Theme: 2 + 2 + 2 + l; tension: 8 (5) + 28(7) +
•
+ 8 ( 9 ) + 2S ( 13)
"2:" (13)-f XIII
o_
a
I I
Il
)1
Figure XXV•
Theme: Type I I :
� (13) : XIII
C ::: 2C.s-
I3
S
\I
+ C-7 + 2C3 + C-s-
Il
tensi on: 8(5) + 8 ( 7) + 2S(9) + S (ll)
M = a
ff
(please see next page)
0
0
7.
(Fig. XXV)
•
q
/3
II
/3
7
I3
13
I1
I3
:
I
I
I
•
I
•
s� �
..._
_
?r
7
�
if-,
'�...--==:'s_..!....?
__
,
_
s
__;_
?
__
q
-------1..
'f
_
__;
,
L.._.
'
_ ---------
?r
_
1
_f._______;..s
=-
_
!...,__
With more than one attack of M per H',
the quality of transit ion in melody, during the chord
changes, becomes more and more noticeable .
In melodizing each H with. more than one
attack of M, it becomes neces sarr �o perform modu�a
tions in melogy.
Such mod1.1Ja tions are equivalent
to polytonal-unimodal and poly:tonal-po_lymodal transi
tions.
The technique for this based on common tones,
chromatic alterat ions or identical motifs is provided
in the Theory_ of Pitch Scales (The First Group).
ExB.!Dples or SY!Pmetr�c
Melodization.
-r
v-
0
0
•
8.
��
"'
-
M
-
�+ '+ + � j
l.I.
�
]
'l
.. '
4 $e.R.tE.� OF
''!>
-
4
■
°'
�
•
s
\\
�
-
-.
.
I I
:3
I)
/I
T.
-
.
•
/I
r -•
�
c;
II
.
'... ..
..
'■
.,
. ....
•
•
IY�:=:::;========t::;=-=========t=;::=========t===========1�==========::t�!I·:Z:"2·=======t:=:1:�-�======:t=
rT ,-1
1111111-
I
••
-
1
i.1 -q
1
I3
V1 I
: �..""
:k.loo
e. ■...
. � •t- .P.■=-�.,.,
A•
, ..,. 1' .:...
�h
••...
....s.. ��
, ...." + P..
..- ..,
,
__.-
.
► .-... -8:-
��� f-+-1---+--l--+-4----+--+---+--+--1--1---+-l--+--+--+--+----+--+---+--+------H-I
I
•
I
l
0
_,
-
. I
•
-
-
"
7
•
.....
I�./
7
..
•
!!:
'·
-·tr -- a-. .
II
��
•
■
4-
'.I
•
0
t
--·
•
•
I
,':.
I
-
- --..•
I •
,
-
-
t
I
c::;;;, •
•
.
•
J
•
s+:
-.
�
M
I ,.
,
• -i
-
•
2
i�
·
�
t
I
,
•
•
�-rt
. ·v
��-
..•
•
-
0
0
•
u
(Fig . XXVI, c ont. )
_.,,. C:! •
•
-
I
•
....
--,
-,
-·�
'
P...J
"
-
;ii!!
�=
•
....
..
0
...,
..'
•
•
l kii
.I
•
..
I
-
•
.
"
-1;-•.
?P I
•
•
-
.•
!- -f. I
•=
..
· :a":'V
'?J.
�
I
T
,T;
.
-
;t,.
�
.
�
.
'
•
•
.
.
-
'.
�-
I
•
I
,I.
'•
•
•
I
�-
�
• I
r
�.
•
•
-
��� '
-E
l
�
•
.
• .
• •
If:
I•
•
•
•
..
-
•
-
..._
.._
•
.
With this type of saturated harmonic
c ontinuity melody often gains in expressiveness by
.
being more stationary than it would be desirable in
the diatonic melodization . Greater stability of
.
tension is another desirable characteristic •
•
•
.I
.
I
·-...
.
; ti::
-•
•
::i!
�
u
-
•
• I
--
.
Gi
I
•
.
��·:
•
z::�
......... , ....
•
:
�
!•
•
•
0
0
10.
While mixing the different master
structures for one harmonic continuity, it is
desirable to alter either• the lower part of the•
_(_1_ 3 ), i . e . 1, 3, 5, 7 or the uppe� part of it,
L
i .e. 9, 11, 13, wit hout altering the lower.
Let us produce a mixed style of master-
•
structures, confining the latter to
After su c h a sele ction
(13) XVII.
L
L
(13) XIV and
•
J.S
made, the
master structures become simply: �, and Y- •
Now in devising the style we inusb r esort to the
''
coefficients of re cur rence, as the predominance of
•
2,
one � over another is the chief stylistic character
istic.
scheme :
M
n
Let us assume the following recurrence-
2 L,
+Y2. .
= a + 4a .·;
¼ serie� of T.
= 2S(9) + 8(13) .
Figure x;xvrr.
(please see next page)
i
-
)
0
0
•
11 ..
(Fig . XXVII)
.. -�ll �
'
•
,,
6
•
•
�-
I
•
- - 1 ...-
\
\ ')
·"-
:tfl:
I
•v
-
�;
·e
�
.,
�
-
·-
�
f
V
•
•
C
f:@
:. I ,...
•!!f,. ""·
\ fl)
.
.0 A
•
I :,
f�
'
....
a
L
C
ILi
-e
�
\"'>
.
II '
,..,
...
.I
•
r
,.
I;
1' ;
'
� -
-·�
•
•
0
0
12.
Lesson CXL.
Chro��tic Variation of the Sy�metr�c
Melod :Lzation .
Any melody evolved by means of symmetric
melodization can be co11verted into chromatic type by
means of passing and auxiliary chromatic tones.
Such
chromatic tones do not belong to the master-structure .
Rhythmic treatment of dur ations must be performed by
•
means of split-unit groups.
Fig ure XXVIII.
Example of ChJ'omati� Vapiation of
=·
the SY!D�etr�c Melodizatipn.
,,
1...�
� .
··- t
-
,,
,,,.
-
'
I
r
---
,
•1
t
b
,"7
•,r1
(;I
-' •
".I
7
'
-
I
'
•:JI
.
�
,
•
..
�
..
-
.. ..
. =- ...
-.
. �!.
u -:5!!l
lij-
If■
Theme: Fig. XXVII.
,
•
�j ,t
�
•,.
-
.
..
"" .
1 • .. •,... "" ...,
j
·•�
'
-•.
-
...
t ...
'
'I
•
..
�
-
.
'
�
.
·-
I
-...• . ...
•
•K7
r
LillI,,
�'.�
-
.,
..
�
.
---�
,
r,•
(;}
-
:!s.'
'
.
�
•
0
0
13.
All rhythmic devices such as composition
of attack and duration-groups are applicable to all
forms of symmetric melodization.
Chromatic Mel odiza�ion of Harmony
Chromatic Mel odizat ion of Harmony serves
the purpose of melodizing all forms of chromatic
.
•
continuity.
This includes: chromatic syst.em,
!Do.dulation, enharmonics, altered chords and also
•
hybrid p.armonic con.tinu,ity,
As a consequence, it is
applicable to all forms of symmetric progressions,
but by th is we have nothing to gain as symmetric
melodizat ion is a more general technique .
There are two fundamental forms of
•
chromatic melodization.
One of them produces
melodies of either chromatic. type, or of extensivefy
�hr oma,t ized type .
Another produces melodies o f
purely diatopic t ype .
The first technique consists of
as auxiliary
anticipatipg cho.rdal tones and usipg them
•
tones .
In a sequence R, + H2 + Ha + • • •
the
chordal tones of H2 are the auxiliaries and the
chordal tones of H ' are chordal tones while this
chord sounds .
In the next chord (H 2 ) the chordal
tones of H 3 are the auxiliaries and the chordal tones
of H 2 are chordal to nes wh ile this chord sounds.
This
0
0
14.
procedure can be extended ad infinitum.
As all the disturbing p itch-units are
•
harmonically justified as soon as the next chord
appears, the listener is not aware that nearly all
chromatic units of the octave are used against each
chromatic group, especially when there is a sufficient
number of attacks of .M against H •
Auxiliary tones must be written in a
proper manner, i.e. by raising the lower (ascending)
•
auxiliary and by lowering the upper (�escending)
auxiliary, even if they have a different appearance
in notation of the following chord.
L
Figure XXIX.
•
elodization by_ M
eans
Example of Cpromatic M
of .Anticipated Chord�l Topes.•
(c•-!.
..
•
•
.
•
l
b.
-t.�
�
•�F•
�[
:ti!
.•
I .
••
.�.•
.,,.
I. I :
-
- -.c 7
.
�
I•
I
I
.
�-
�.P'7
.
-
.
�:
--
-
-
!
I•
crJ:
:i
.
•
•
�
]
•
•
:a.
E,1' 1
.
I
I
�·
I
0
0
15 .
(Fig . XXIX, cont . )
.,.
-�-
•
'
�
..)
.
..
.
:.I '►
:J:
1••·
';
- • •I
'lfl
.
u
'
llt1
t
-
,
,,..
I
'
I
#".
�
•
tit�
•
t
•
1,,-
I
•
I
•
•
II
I
•
I
I•
�-
•
-•
-
.$,
i<... .�
��
�
lj:8=·.
•
*
�
:ii!
..
f
.
---:
I
•
"
.
•
•
-I
p'·
r: •
__._
-Q:
�-
-,..:
-(;I •
�
.
.
-
��
,'
•
L
t.,:
�
'
�I:
•
-fl}
I
I
'� :
J:
tJ� .
g_
I ..
,_ II
.
•
•
u
0
0
16.
Lesson CXLI,
u
The second technique is based on the
method of construc ting a guan61tative scale .
Such
a scale can be evolved by a p11rely ,statistical
method, Whereas it is not obvious even to the most
0
discriminating ear, it is easy to find by plain
addition the quantity in which each chromatic pitch-
.
•
unit appears during the course of harmonic co11tinuity •
In order to find a quantitative scale it
is necessary to write out a full chromatic scale
from ap.;y note (I do it usu.ally from . .£) .
·,
The next procedure is to add all the c-
pitches in a given harmonic progr ession (doubled
-
tones to be c ounted as on e and enharmonics to be
included).
Then all the c� - pitches , d - pitches,
etc . , until we sum up the enti re cliromati c scale.
This produces a quantitative analysis of a full chromatic
scale .
Now by eliminating some of the units which have
lower marks, we obtain a guantitat�ye (diatonic) scale.
If .there is one unit having highest mark,
it should become the root-tone of the scale and,
possibly, the axis of the future melody.
If there are
more than one U:Qits having highest mark, it is up to
the composer to assign or1e of th;,em as an axis.
In the chromati c progression of
0
0
0
17.
Fig._ XXIX, the quantitative analysis of the
chromatic scale appears as follows.
Figure XXX.
-
,_
4
•
•
•
By excluding all values below 4, we
obtain the following nine-unit scale 'v,ith the·
root-tone on � (maximum value) .
•
Figure �I._
If such a scale still appears to be
too chromatic, further exclusion of · the lov,er marks
may reduce it to fewer units.
By exc�uding all the marks below 5 (in
this case) it will reduce the scale to five units
. and give it a purely diatonic appearance.
0
0
18.
figJJ!' e WII,
•
The next procedure is the actual
•
melodizabion, which is to be performed according
to the diatonic tecrmique.
•
By this method, the
tones which quantitatively predonl'inat� during the
course of chromatic continuity (an d which, affec·t
0
us as such physiologically, i.e. as excitations)
become the �its some of wh,igh sat�sfy every chord
and attribute a great stylistic unity to the entire
J
•
•
product of melodization.
The quantity of attacks of M against H
largely depends on the possibilities of melodization.
Fig ure XXXIII.
4
C
Example of C hromatic Melo�izatio� by
means of 24ant� tative piatonic S�ale
(please see next page)
I
0
0
19.
(Fig . XXXIII)
-
.
-
�
.I
2
�
-
I
•
�
-
-
-�
-
•
•
•
-
•
•
'
�-
':s5:
,.-
.-
. ....
-
•
.
Ji'Q
.1
p 1""
-· .-�
I
•
•
I
,
' '
,.
P-
;,e,-
�
..r
I
•
-
,, ·1
II
••
•
.I
.
.
Cl
,-
••
-0
e
.
--
-,
9.:eI
]
�
. -..
-
--,,
�
I
,::,
�
•
.,
-
�
•
�
..
I
I•.I
•
�
-
•
,I
r
•
*
;#
�
. ..
e
I
I. '
.I
•
••
••
•
�
I:,i
_
.,
I'
•
:f%�
.
a
-
J,�
.-
,.f-8..
.
r
•
CJ
':/F
-
0
0
20.
u
The two techniques of chromatic
melodization can be combined in sequence.
This
results in contrasting groups of diatonic and of
The quantity of H covered by
c hromatic nature.
one method can be specified by means of the
coefficients of recurrence.
For example: 2H di + H ch.
•
•
Figure XJQCIV.
•
�-
=
'
�
'
\.J
�*
,.
".
,
I•
•
•
.�
•
•
·�
�
,
•
•
•
''-
ff
I-e
.�
"")
I
-tJA HI
•
•
•
•
0
0
J O S E P H S C H I L L I N G E R
C O R R E S P O N D EN C E
With: Dr. Jerome Gross
Lesson CXLII.
C O U R S E
Subject: Music_
HARMONIZATION OF MELODY
The usual approach to harmonization of
melody is entirely superficial when the very fact
of finding a "suitable" harmonization seems to solve
the problem in its entirety.
Looking baqk at the
'
music which has already been written, we find quite
a diversity of
styles of harmonization.
In some
cases melody has a predominantly diatonic character
w hile chords seem to form a chromatic progression,
and others when meiody has a predominantly chromatic
'
character while the accompanying harmony is entirely
diatonic.
Operatic works by Rimsky-Korsakov and
Borodin may serve as an illustration of the first typ�,
and music by C hopin, Schumann and Liszt, of the
second type.
This brings up the question of
systematic classification of the styles of harmonization
By a pure method of combinations we
arrive at the following forms of harmonization :
(1) Diatonic harmonization of a diatonic melody.
(2) Chromatic harmonization of a diatonic melody.
(3) Symmetric harmonization of a diato nic melody •
•
•
0
0
2.
(4) Symmetric harmonizati on of a symmetric melody.
(5) Chromatic harmonization of a symmetric melody.
(6) Diatonic harmonizati on of a symmetric melody .
(7) Chromatic harm onization of a chromatic melody.
•
.
•
(8) Diatonic harmonization of a chromatic melody •
(9) Symmetric harmonization of a chromatic melody.
In addi tion to this, various hybrids may
be formed intentionally, · and they do exist in the
music written on an intuitive basi s .
The necessity
of handling the hybrid forms of harmonic continuity,
which is inevitable not only in p opular dance music ,
but frequently in music of composers who are considered
"great" and "classical", for the purpose of arranging
o r transcribing such music, requ ires a thor o�gh know
ledge of all pure, as well as hybrid, forms of
harm onizati on.
1. Diatonic harmonization of a
diatonic melody:
There are two
fundamental procedures
required for t� above method of harmonization:
(a) The distribution of the quantity of attacks in
melody and harmony, i . e . the quantity of attacks of
melody harmonized by one' chord, or the qu�nt ity of
chords harmonizing one attack in melody.
(b) Selec�i on of the range of tension • .
CJ
•
0
0
3.
attacks.
Let us take a melody consisting of 12
Such a melody may be harmonized by 12
different chords, each attack in the melody acquiring
its individual chord.
It may offer as well two attacks
of a melody harmonized with one chord�
In this case
6 different chords will constitute the harmonic progression.
Further, eacl1 3 attacks of a melody may
acquire a chord, thus requiring 4 chords thr oogh the
entire melody.
•
Proceeding in a similar fashion one
may ultimately arrive at one chord harmonizing the
entire melody.
''
This is pos sible because no pitch-unit
in a diatonic scale may exceed the function of 13th,
and will merely require an 11th chord for harmonization,
u
in order to support the 13th as an extreme function in
a melody where all the remaining units of the scale may
be present as
melody.
well.
Let us take, for example, the following
Figµre I._
•
•
0
0
4.
In order to harmonize this melody with
12 different c hords it is necessary to assign each
pitc h-unit of the melody to a cl1ord.
Such an
assignment is based o n a selection of the range of
tension.
Let us suppose that we limit our range
o f tension from the 5th to the 13th.
Having a
consider able choice in the assignment of pitch-units
as chordal functions we will give preference to t hose
•
forming a positive cycle.
Examples of assignment of the above
melody:
M
H
T
R ange of tension : 5 -- 13
1
Figure II.
A.
?
7
q
7
7
• •
•
•
•
•
.
.
•
•
u
•
•••
I
0
0
-------.._.---
5.
B.
1
,
,
1
s
S'
5
.
•
•
u
In assigning 2 attacks in the melody
against 1 chord, it is necessary to conceive the 2
ad jacent pitches in a scheme · of chordal functions
(thi�ds in this case) .
Thus, the f irst 2 units,
a + b, have to be translated into
: , which may
assume the following assignments:
13
a
9
11
b
3
5
7
C
9
lI
13
3
5
Likewise, C + d transforms itself into:
•
d
7
The next two units produce:
5
3
7
9
5 - 7
11
9
13
11
0
0
•
The next two units produce :
d
5
7
9
11
b
3
5
7
9
9
11
3
5
7
g
9
11
13
a
3
5.
7
The next two units produce :
The next two units produce:
6.
13
11
13
This group of ass.ignments offers quite a
variety of harmonizati ons, even 1vvith the preservation
of the pos itive system of progressions.
Figur e III..
Range of tension: 3 -- 13
.�
-. e
1 2' -
.'
',
,1
,.�-,_•
...
I•
u
••
3
r�
5'-
1
-
F'
'
I�
r•
.---,,
*
J)
'-
-i!
.r-
3- S
'i - 7
g
Gt
r,I
s
.
I,
r:;;,
-6
T
•
.
.. .
....
,, -s
1.3
rI
-
-
-,
'!_.,-.
►
-
9
r
J
0
0
•
7.
Lesson CXLIII.
Assigning every 3 pitch-units of the
melody to one chord, and distributing them thr ough
the scheme of chordal functions, we acquire the
follov,ing table ..
•
M
H -
•
•
Range of tension : 1 - 13
3
Figure IV.
•
A•
-·� n
-,
'
'•
()
-A
-
�
•
,,
••
-•
II
f
�
-
s
,_
••
1
1
5"
7
-I
..-
•
.I
.,_
,,
1
..•
I
-
":!:
•'
'
'
I
'I
•
'
•.
I
"
-
I
11
13
-•.-
'
-
•
_.
,_
fi
I
fS
•
•
• •
•
I'\'
....
•
I
•
�
�
1
B.
.
1 � - 1 - ·1
e
•
•
•
.I
-
ri
.
•
•
-
-
�
r.I
.
.
-
rI
�
-e
' •
•
--
-
V
.
�
•
r•
-
-
�
1'
�
=
--r:r
�
Q
,
.I
/
0
0
8.
c.
M - 4
ii -
Range of tensi on: 1 -- 13
•
•
'
II 1
I'- •
·
�
11
•.
r•
•
-
•
-
,
•
I
'
,
�
..�
•
•
a:
,r�
-�
-
-
-1 r.
•
J
II
"
•'J
i
'
-,
'
q
0
-
�-s
C
'
•
X
I,
I�.
-
•
r
.,
I
.
•
·,
C7
?J'"
�
-
�
-.
.
�
•
..
,;.
.-. .
.
�
,I '
1
�-
I':.,_
.
,...
.
�
,.
•
-
.
=
•
•
· . •.
�
- .
" •-
.•
.- ·
-
•
5" -
f ';
"7
-
-
.
.
1
''
-1-
'f
-
·�
.
,_
•
-•
-
•
•
•
-
I..J
•
-.
� -•
.. .- .
• .
-
....,-
,-,
Range of tension: 1 -- 13
�
II 1
11
• • "'; " • c..'.i
r• .
M = 6
H
t)
-
.
,.
C7
........
J
r•
--
••
.
•
.
•
0
0
-
••- 1T
••...._
�
,,
-
�
*
•
.. A , +•
-:: '
--
-
\ +1
,
-
'•
•
ff
...•
11�.
I,
'
I
.
-■
r
•
•
,
" ,- -
�T
:
Ir
--
.,
I
" -,'-
,
•
'
'
•-
-fJ-
I
,,
'-
•
I
.,
-
.....
,I
'
•
�
-
-
, •
'
I
�
•
'° A
,. I
•
\
•
IIr- I- ,
..
......
r
,r
I
,_,
•
r
,,
•
�
' I
-
-
1
-
-
-
•
•
"""
.-
�i,a.
V
..
I
-
..�
�
•
9
•
'
*
,
.
3
�
-
l
�J
,
�
,1
_J
- -...
r
I
•
-
]
""
I
-
•
- -,,
....
-
•
..-
-
•
�
-
.
,,.
-
I'
-
i;.
'
-
•
,. -;--
•
I
c::
..
'
-
-.:_-
I
-
I
i;;
-.,
,
-- -
-
.
-
,
.
-
•:,c;;
•
.,
-
,
j
-
'
-,-
-- J
I
]
-
I
�
]
�
""'
--
,t-
I
-
..
•
♦
-
t
•
'.I
-a
I
-
•
•
..y-
l
••
-
-
c:::
•
•
..
,
'
-
-- -
-•--
-
�
16.
I
�
-
•
j
I
•
I11.•
,,
•
I
I
c..
•
A
II
�
.
.
�
•
•I
-
I
Figure x._
,1
#,(
..,J
Q
'(
nM
-
'
-
r
I
•
.
--
r
a
;
-�
,
h1.,
,
-J
• V
L
-.,
,
-
,,
'
'
'
0
0
-
-7
-;
.r
Ii
I
-
,
' :f'-
,.,
.
�J
.I
I -3
•
.
,
I\!
�
..
•I
...
.,.
Ii
,,,
•
•
-
•
-
�
'
•
'
-
•
.
(>
r
.,
!�
...J
- '!1.
-I
� �
G
"
•
I
�
•
-I..
-
�
¾ :�
�
-6
-
.,,
•
.,
'
;
'
...,
I•
.
•
,
'
I•
,.
-•
•
.
-!
J
,,
I
,�
3
•
,
•
'
, • ,J
,
r
-
- '
..
J
-
_,
Q
-
l•
I
,
I
-
p�
-
,..
•
�
�
--
�
I
.•
---
."
-I I'
•
-
'
.
.
I
�
�
--
•
•
,
.,'
-
.
-•
•
';,r..
,
-
I,
""
'
-
.
,..._
-
£J
,
.:::Jr
-
'
�
-- - rI
-- -...
-•
,.
-
•
p
-
Ir
-
.
�
�
9' -7
-
--
�
I
'-"
..
-
-
.a:
--
•
]
•
I
-'
-
,
•
c;;
•
- .....-
.
�
-
.
Iol,
�
.
,r_
-'
,
'p�
�
•
-
.
�
-
-•
�
'�
l
-
..
•
%
-
-f
�I•
•
'
.
.
•
-1
]
A
...,.
,.
e
•
�
I
•
,
•
LSIl
...,,
-
I' ,
')
I
I
.�
.
C
!I
-
f
1
•
17.
,
�
,'
"
�
�
I, ,.,
-
r
,
'--
�;
I
eJ.
�
=o
0
0
18.
4. Symmetric harm on�zatiop of �
symmetri� melody:
There is a very small probab·ility that
melodies composed from symmetric scales outside of
this method have been in existence , as the conception
of symmetric scal es it self is unknovm to the musical
world.
.
•
The problem of harmonization of melodies
composed from symmetric scales requir es , therefore ,
•
As it ha s been
the existence of such melodie s ..
of symmetric
explained in the third and fourth grou P.
'pitch scales, melodie s can be composed through
permutation of pitch-units in the s ectional scales
u
(each starting with a new tonic) .
After the complete
melodic form is achieved the fir1al step corisists of
superimposition of the rhythm of durations on such a
continuity of melodic forms ..
Let us take a scale
based on 12 tonics where each sectional scale has a
structure 3 + 4 and limit the entire scale t o the
•
first 3 tonics.
As
scales of the 12 tonic system
have a wide range expanse it is desirable, in many
cases , to re duce the range by means of octave
contraction.
Figµre XI..
•
L,
•
•
•
•
•
•
•
•
►
•
,
•
•
•
•
• •
• •
-
0
0
The next step is to select a melodic
form based on circular permutations of pitcr1-units
in the above scale and the rhythmic form based on
synchro nization of 2 + 1 and (2 + 1) 2 •
I
u
Figure XI.I •
201#:
fJ.J
•
t
e.
•
•
By superimposing the rh ythm of durations
on melodic form we obtain an interference as the
number of attacks i n th e melodic form is 9, and t he
number of attacks in the rhythmic form is 6.
Thus,
melodic form will ap_pear twice and rhythmic form
three times.
Figure XIII .
Composit i on of Melodic Continuity
Melodic form consists of 9 attacks
-69 -_ -23
Rh ythmic form consists of 6 attacks
Melodic Continuity
•
(please see next page)
0
0
•
20 .
(Fig . XIII)
..
•
s
• •
•
..:..:.....,.--,-----i,,,---'-·--,ta;.....;...
· • -----·
1�
•
r
IL----::�---
a
T
n
..,,.
C
18
s
$■•"""•••-------=---------
•
•
•
In the above melody the sequence of
chords will be assigned to each tonic .
'
\......I
Thus, the
first sectional scale emphasizes 13t, the second -5t, the third -- 13t, the second recurrence o f
the first -- 5t, the second recurrence of the
S
•
second -- 13t, the second recurrence of the third -St, and an axis ( = 18t) is added for completion.
0
0
'
21 ..
Lesson
CXLV,
•
Here are tv,o methods of symmetric
harmonization of melodies constructed on symmetric
pitch scales.
The fir st provides an extraordinary
variety of devices while the second is limited to a
;
considerably smaller number of harmonizations .
A. The first method assigns the importa.tlt
tones (all pitch-units in this case) of a sectional
scale to be the three upper functions of a
L (13}
adding the remaining functions dovmward- through any
The first sectional scale in
desirable selection�
the als)ve melody has three pitch-units (c, e P, g)
which we shall originally conceive as 13 - 11 - 9,
downwards.
The continuation of this chord downwards
will require pitch-units of the following nam es:
a, f, d, b.
In the following L°(13) a certain
structure is offered as a special case of many other
possible
L.
Figur e XIV.
� 13
..
I
...
10
0
0
"
p 0
0
0
•
22 .
The upper three functions of the
chord (red ink) may produce their own chord in
harmony.
Thus, the functions 9 - 11 - 13 of the
L may actually become 1 - 3 - 5 .
All pitch-units
of melody and harmony are iden tical in this case.
(See Figur e XV - A) .
By assigning the same three
pitch-units as 3 - 5 - 7 we have to add one
function down. (See Figure XV - B) •
A.11 further assignments of thl3 three
•
•
pitch-units, namely 5 - 7 - 9, 7 - 9 � 11,
9 - 11 - 13,
11 - 13 - 1,
13 - 1 - 3
are the
c , �, e, f, g, respectively, on Figure XV.
This
Figure offers a complete transposition of all the
assignments through the three tonics employed in
•
the melody •
Figure XV.
(please see next page)
•
I
0
0
Figure x:y_.
15""
-I
,
,,.
t
1
�
,.,
•,
.I
�
,
•
..
. ,-• ,..
u
C - l\R.ou?
(
,,
•
'
'
�
'
'
l
I,
a.J
.- -
...
I
..
....
0
-�
•
�
llt'eJ,½·I
• V
I•
-
I
,.,
s
'
..
-
.�
1.
I',1
'I
'
-'8-
•-
I
-!I
•
t
,,...,
,,.,
••
-""
-
--
••
'
�-Q
V
�
-,,,
(.,I
"'
••
,.,
q
�
.
••
.
--
""
*�
--
�
.
II
.
..
---
· ?,
,•
.
..
·0,I"'I
.
'
{
�
"'
,1
'
b - ·- 1..
,.,
'.
�,,
•.1
6J
-
l
,...
�o
..
{
'1.>-
••
,,,,
I
•
I -
""
,,
•
-8-
:i-=-
'7
,"li
I�
'
I >�
,.
,.,
,,,
'
.-
I
1- 1�
�1
rr,,•
u
. ....
B - �Rovf>
�
{!
,
,
••
,V
�
v_
,,.,
, ,·�
�
,..
d.,
.. -
-
•
• ,I
,
.
r,1
. r-½
0
3
,
I�
IN' �"
I- ..
..
:,,,.,
.,
•
l
�'""
vv
b.
,.,
'IJ J.1
h• ,.,
),
r•
r,.I
•
.J
Jf,/
. ,,,.,,,
,,
tL
II
.
7"
i,, ,,
,,,I,,
,,
,,
,,I
'.I "
,
•
•
,,.
'
r:,
Ir:,
r:,
(7
,,,
.
., ..
.. ,.,
�
-'
'.
,..
r
p-j-
0
0
24.
As Figure XV exhausts all the possi
bilities under the given group of chords it is
possible to exhaus t all the forms of harmonization
for the given melody through various forms of
constant and variable assignment of functions �
As
the melody consists of 3 groups, the sequence of
.
•
chords with regard to these 3 groups can be read
directly from Figure XV, and the letters on
Figure XVI represent the respective bars of
Figure XV in such a fashion that the f�rst letter
refers to the first group of the melody, the sec ond
t o the second, and the third to the third.
0
Figure· XVI.
•
•
aaa
bbb
CCC
ddd
ggg
fff
eee
a ab aba baa
cca cac ace
eea eae aee
gg11 gag agg
aad ada daa
ccd cElc dee
eec ece cee
ggc geg egg
aac aca caa
ccb cbc bee
aae aea eaa
cce cec ecc
aag aga gaa
eeg cge gee
aaf afa faa
eef cfc fee
eeb ebe · bee
eed ede o.ee
eef efe fee
eeg ege gee
•
G
•
ggb gbg bgg
ggd gdg dgg
gge geg egg
ggf gfg fgg
0
0
25 •
•
G-
bba bab abb
bbc bcb ebb
bbd bdb dbb
bbe beb ebb
bbf bfb fbb
bbg bgb gbb
ffd fdf dff
ddf dfd fdd
ddg dgd gdd
abe
bcf
cdg
cef
acd
bdf
cfg
acf
bef'
ace
acg
ade
adf
adg
aef
bde
bdg
def
deg
cdf
beg
abg
u
dde ded edd
ddc dcd cdd
cde
abf
�
ffb fbf bff
bcb
bee
ffa faf aff
ddb dbd bdd
abc
abd
•
dda dad add
ffc fcf cff
'
ffe fef eff
ffg fgf gff
efg
•
dfg
ceg
beg
bfg
•
/
aeg
afg
•
The total number of possible harmoniza
tions to be derived from Figure XVI is as follows :
7 cases on constant te.nsion: aaa, bbb, etc .
•
18 x 7 =
0
0
26.
= 126 cases on a tension that is constant for 2 of
the three groups.
35 x 6 = 210 cases with variable
tension for all 3 groups.
Thus, the total number
of harmonizations for the meloey o ffered is
7 + 126 + 210 = 343.
B.
The second method is based on a
random selectior1 of a ""i:""(13) based entirely on the
preference with regard to sonority.
•
As any � (13)
has definite substructures and often 'in limited
quantities, the possibilities of harmonization are
less varied than through the first method.
If one
selects L (13) w ith b� and f4{ on a c scale (see
Figure XVII) the possibilities of accommodating a
sectional scale 3 + 4 (minor triad) becomes limited
•
to only tv10 assignme11ts, namely, 5 - 7 - 9 and
13 - 1 - 3.
Figur� XVII.
l:" (13)
•
••
•
•
•
•
•
•
Retransposing these functions to the
melody assigned for harmonization we obtain the
following results.
0
0
I
27.
Figure XVI�_I.
C - �R.o.Jf>
•
•
•
•
•
(J../
As it follows from this figure, each
sectional scale of the melody permits only two
versions of chords.
Thus, by a constant or
variable assignment of the t,,o possible versions,
a complete table of possible harmonizations is
obtained .,
•
Figure •XIX •
aaa
bbb
aab
bl:>a
aba
baa
•
'
bab
abb
Thus, the total number of possible
harmonizations amounts t o a.
0
0
- - - - - -- - --
- --
-- -
.
-
-
�
.
-
-
28.
In tbe cases where sectional scales
are too complete, the assignment of only certain
For
tones as chordal functions is necessary.
example, in the following
scale based on 3 tonics
and 5-unit sectional scales, it is sufficient to
assign the wh ite notes as chordal functions, then
in the m�lody derived from such a scale, black
notes become the auxiliary
•
Figur� XX.
•
.
•
aid passing tones .
,
•
•
•
,
•
,.
•
•
4•
'
•
.a. (�)
•
•
In some symmetrical scales the structm·�
of individual sectional scales is such that the
sonority of certain pitch-units does not conform to
the structures of special harmony (i.e. harmony of
thirds).
Some of the units of such sectional scales
may be disturbing, and though they may fit as
passing tones in some other chord structures than
the ones emphasized by special harmony, the y
•
•
decidedly do not fit as passing ton es · in many r:,_ (i.�.
In such a case each pitch-unit in such sectional
scale of a compound symmetric scale must be assigned
•
•
0
0
•
J..
either as a chordal function or an auxiliar y tone
with a definite direction.
These pair s, i.e.
the chor dal tone and its auxiliary tcne, ar e
dir ectional units r
In composing melodic for ms from the
scales containing dir ectional units it is necessary
to permute·.. · the dir ecticnal units and not the
individual pitch-unit s .
After all the units ar e
assigned the above described procedur e of harmoniza
•
tion (the second method ) may b e applied.
Figure XXJ .
•
•
•
• -. .. .
,..
•
The arr ows on the above figur e lead
fr om an auxiliary tone to a chordal function.
•
0
0
0
•
J O S E P H
S C H I L L I N G E R
C O R R E S P O N D E N C E
C O U R S E
Subject: Music
With:,.Dr, Jerome Gross
Lesson CXLVI.
5 . Chromatic harmonization of a
.
•
Chromatic harmonization of a symmetric
•
melody is based on the same principle a·s chromatic
harmonization of a diatonic melody (see Form 2,
page 1 of Lesson CXLII) .
The proc�dure consists of
inserting passing and auxiliary cllromatic tones into
symmetric harmonic continuity .
As a result of such
insertion of passing or auxiliary chromatic tones
altered chor ds may be formed as independent forms .
This type of harmonization may sound as
either chromatic continuity or symmetric continuity
with passing chromatic tone s to the listeners.
•
(please see next page)
,,
•
0
0
Fi�e XXII .
C.
FovR.� ?RRf H'(BR,p
J:€.EP LN A D�E.AN\
r 3 --,
_.W1T'H CiHROr'\1\11t.. r\l\ft..,-..o.,),
;i P:(io,.(
-'-'-- -
'-----
J
-,
,
'
....,
-
L, .,.
•
'
,
'
�
-
�
�
'-
.. .
'-
...••
. ..
'-
'
- .J
'• o
,
"
I•
-i
-
•
..
,
I, -
,
,,
...
7, .
'
C. {JO
.II
-
..•
J
'I '
'-
'
,, - ◄
•
�
•
•J
' -
'
-I/-
c;;;
:;..
- n5
•
'
rJ
..
::gi
-
L
�=-
r
/V '-'._
- q��
�
'
�
'
,,,
,
�
.
-
I
"· ,
•
'
'I
l
'
�
�;
o
��
'
l
�-,
'
-,,�-
'
,,. ...,
w' ''
-
' 1
,r,
•
I
�
.
-
J
...
I
._!., •lo •
I
,.
I' . :j:
'- t,~o
-
-
II
•
'
..
-,
�
'
$
I
-,
- ' r;
'
.�I�
�
.
�
-
�
#'v
.
v
X-fr
flJ
,
)(0'
•
•
•
,
r- �
·-�
•,- '
.. �t
I
:,
�-,
· ...
"""
.,
'
J
,
-v
_,
I
CJJ
\.o,
$
-_,,
I
--
.
•
.... u.
I
,
-�
-� ..
,'
.
��
••
r
.
wpi"��
-
,
'
•
•
-
'�
��
.. '
'
-J
.
I
I .,_
.,_,
C'�• U:--"' P.ia 111..
... ._-
,
.
I
•
•
r
...
..
,
'
•
�b
'
I
-
'
-
I .4
•
... {
I
-
I
�
I
•I
;�
..... •
.
I:,c:- ,
"" '
-
•
'
Y-
�
I..._I
l
...
J
. ..
..._,
-,
•
I
-
r
,A)I
�
�
'
9
-
,PIii
-
'
•--,
'
•
'""-
-
.
'
C. 'J
j•
--a-
b'-1
-
I
�
·1
6,.
J '
\. '
-
•
•
•' • •
".,
-
II-
..'J
...
A
I
-
I
...... I ..•
-,- '
I
..
•
�
�
•
-
A
•
,,
-'
.
-
--
I•''.J
,
•
�
v ..
-
�
.
'
r
,.
- II
•
•
I
•
..
..
•
I
,
•
.
] -
'
2.
II
•
-
C
0
0
-.
�
-
.,
•
I
"'\
,-
(
t
,-1- �·-' ... ...
..
;
i*
•
•,.
,_,
I
I'�
-
,�
'i �
,
-
l�
.,
.
''-'
•
"
-
!
.
•
'
- ,-:g1
-
',.
'
I
.,.
·�
'
'
••
•
J
T
,.
i..
r-•
(7
-
'
�
•
�
,
:
a.
DV
I
'
, ,
.
•
.
•.
' I
r
.
:..i/Y
�
,.,�
�
,.
'
'\!
7
I
•
1.
11 -
.
-
....
"I -
,.
'll'
'- I
-..
-
,_ �
'
,,
.. '
�
-
,.
-
....
.
,
r
I
.,
•
-
-;,c
�
'
,
�
•
•
j
..-
••
•
...
•
r-
,...--
'
'
11
-
--
I
•
-
-,
' I
.
�
-
..
..
I - I
'...,"
,
.
•
�
ED •
I..-
• •
�
I
•r-
.-- l
...
-
w
I..L.-
I,
"'-
r
fr
,
-
-
•
--
--
•JI
r
,
.
I••
•
v
•
..
-
•
,,
..fO,T
,:,3
I
�
3•
•
�
I
•
-
\)( �
•
•
I
--
.
�
•- r. L
•
..•
'I
,
.
... -, .,.··.. ± "
... I .- I
- -- --
� -
.
,
.�
...
• Loo
c;
I-
,
"
a
,.
-
.••
•
I
.
..., ·*' '
��
(;J
., C: .._qo_
••
-
-
-
�
'-
-
-s:
,,
,.
�
•• r
&)
'lf=
�
-
,'
,.
--
I"
-
0
0
If you find that certain passing or
auxiliary tones in the above example sound unsatis
The greater the
factory, you may eliminate them.
allowance given for altered chords, the greater the
number of possibilities for the chromatic character
of symmebt'ic harmonic co11tinultty.
6. Diatonic harmonization of a
.
•
Melodies constructed from sy mmetric
•
scales cannot be harmonized by a pure diatonic
continuity .
The style that has diatonic characteristics
is in reality a hybrid of diatopic progression�
stmmetr,ically conn�cted.
0
This type of harmonization
is possible when melody evolved within the scope of an
individual sectional scale can b€ harmonized by several
chords belonging to one key.
The relationship of
symmetric sectional scales defines the form of
symmetric connecti ons between the diatonic portions
of harmonic continuity.
The diatonic portions of
harmonization are conformed to one key.
Symmetrical
tonics do not necessarily represent the root chords of
a key .
For example , a note c in a melody scale may
be 1, 3, 5 , etc. of any ch ord.
In most cases of the
music of the past such harmonizations usual ly pertained
u
to identical motifs in symmetric arrangement, as in
0
0
the first announcement of a theme by the celli in
Wagner 's Overture to "Tannheuser", where identical
motifs are arranged· through '!/2, and the diatonic
portions appear as follows: the first in B minor
making a progression IV - I - V - III.
The following
sections are exact transpositions through the
,
'!/2,
i.e. they appear in D minor and F minor, respectively.
•
Figur e XXIII .
•
•
..
■ ..
�
(j
-
-�
j-,
•
•
•
�
-
�- ·I
, ..
"'
:::[
�-
�-
�
I•
.
'
rt f
-
'
1-.. .,,I.
�
l
!
'
• tI�•
&.
.
In the following example of harmonization
the melody is based on a symmetric scale with three
pitch-units (2 + 1) connected through
3
,/2.
Figure •XXIV .
•
•
I
0
0
•
6.
Each bar comprises one sectional scale
As there are many
utilizing the melodic form abcb.
ways of harmonizing such a motif, here is one of them
producing C0 + c, + C t for each group, and all the
following groups are identical rep roduc tions- of the
original group connected through
•
Figure XXV.
.
•
•
,
s;::
I.,
.,
II
C:
3 ./2•
•
.
I
.
...
.
I
t:
•
•
•119
••
11'
I
;"'
�
"I•
•
II
-
......
•.
#'� .
-
i '. t� f:
il■o
w
1
•
..
f-
XJ
•
•
2
•
-
,.
Music by Rimsky-Korsakov, Borodin and
Moussorgsky is abundant with such forms .of harmoni
zation.
In order to transform the above
harmonization into a chroma tic on.e , all that is
necessary is to insert passing an d auxiliary
chromatic tones.
Diatonic harmoniza t ion of symmetric
melodies not composed on the sequence of identical
motifs where different portions pertaining to
•
•
•
I
0
0
7.
u
individual sectional scales- are c onnected
symmetrically is possible as well.
The latter
form is not as obvious and may seem somewhat
incoherent to the ordinary listener.
.
•
•
'•
G
•
_/
0
0
8.
Lesson CXLVII.
7. Chromatic harmonization of
•
a chromatic melo?y:
A melody which can be harmonized
chromatically must be a chromatic melody consisting
of long durations ..
be assigned to a chromatic operation in a chromatic
.
•
group of harmony .
•
•
Each group of three units must
The usual sequence d - ch - d
refers to every three not es, if the middle note is
a chromatic alteration.
'
Thus , in the 'following
melody the chromatic groups of harmony will be
�
\.._J
as signed as follows:
Group 1 : C - cf- d
•
Group 2: d
- d*- e
Group 3 : a - a'- g
Group 4 : g - g-f- a
Group 5: a - a*- b
F,igur e xxyr .
�w
·t
•
,I
p�
I
•
r
•
•
Ir
•
I
-_,*--
--
0
0
The process of harmonization �f a
chromati c melody chromati cally, consists of two
pr o cedures after the pit ch-units have been assigned
to some number combinations.
As our technique of
chr omati c harmony deals with 4-part harmony, the
melody must become one of the four parts.
Let us
assign the chromatic groups to the above melody as
.
•
follows:
•
Group 1 :
1 - 1 - 1
1 - 1 -
Group 2 :
Group 3 :
5 - 5 - 3
Group 5:
l - 1 - 1
Group 4: 3
•
- l - l
In group 3, a� is a lower ed fifth •
.f"
In group 5, a is a r aised r oot tone. The
following example r epresents the abov e melody in
a 4-part setting .
;I• •'
•
.......
•
"'
,
-
- la
.
"'
,
--·. --
:#·
�
•
•
e
I
,
'
Figur e XXVII.
•
"'.
:..,� .,
c;;
4- '
•
,
.,
'
Ir
...,.
$l:;�
I
I
-
--
I�
--
I
0
,
�
0
1
,
�
•
-
..., ""
'
--s
0
0
10.
·v
The final procedure of chromatic
harmonization of a chro1na.tic melody consists of
isolating the melody, placing it above harmony and
melodizing the remaining 3-part harmony with an
additional voice ..
This additional voice is
devised according to the fundamental forms of
melodization, i.e. it may double any of the
.
•
functions present i n tl1e chord, or add the function
next in rank.
•
In the following example .'the notes in
parenthesis represent such added voice. The
functions of this voice are:
g
•
b
a
-
ll
.
J
f·
i.t,
-
;•
•
....
�
I
I
;.:
I
�
C
d
i::;.
V
-
9
13
5
b - 9
e - 5
b - 7
g - 7
7
a - 7
I
•
'
I
•
r
-61--!
�
,c
I
,..,
'
•
I
�
-ti
• -E6
,
-
e
- 1.3
C -
tF,,
..,
i::;.
�
•
T•
�
,_
-
I
•
-
'
.I
::;,
I
-• I
i
�
(
•
�
.
'
-
•
�
I
•
, .-
'f
~lr;.
: ��
•
l
�
•
•
,
l''J
,_,
--
�
,
0
0
11.
8 . Diatonic harmonization of a
chro�atic �elody:
A chromati c melody may be diatoni cally
harmonized when it has a considerable degree of
animation ( short durations).
In such case some of
the to nes are chordal functions and some be come
.
•
•
aux iliary or passing chromatic tones.
The principle
of assigning the fun ctions which are supposed to be
diatonic, must take place in this case.
The following example is th� melody
which was used as an illustration in the preceding
paragraph and only used in its most animated form.
lJ
Figyre XXIX.
By assigning
C - 5
\
we a c quire F chord.
d - 13
a - 5
In the next bar , by assigning
we obtain D
e - 9
g - 1
chord. By assigning
we obt_ain G chord, and by
a - 9
•
assigning b 1 - 5 we obtain B and E chords .
Thus,
the entire melody can be placed into a certain ·
I
0
0
12.
0
desirable key (C major in this case). The units
�
�
.
a and c in the second bar are auxiliary tones to
•
the third and fif'th respectively of the G chord.
The entire harmonization has a Phrygian character.
Figure XXX.
•
•
-
I
1ft:
•
u
�
•
I
�
'-
-
.
�
,.
�
+-
,�
•
-s
-�
-
-
�
•
•
.,..
I
�
�
"'
-g
I
same melody .
-
-
I
""'
Another example of harmonization of the
By assigning the following functions
we obtain another harmonization :
C -
e - 13
5
d - 13
•
g - 5
Figur e XXXI.
D
.
�
p,;$'
.
fi
.
r
.
-
-�
.., �
.
-
f
rI
$
-
�
•
b - 3
a - 13
a - 9
•
•I
M
.
I
-
-
•
�
,:_• ,
-9
*
-6
.
0
0
13 ..
9. Symme�tic harmonization of a
(J
a
cpromatic �elody:
Symmetric harm onization of a chr omatic
melody is used for tne melodie� of long durations •
In most cases each pitch-unit of a melody has to be
harmonized by a different chord.
-.
The advantage o f
the symmetric method of harmonization is tha. t if a
melody is partly diatonic there is an opportunity of
using one c�ord against more than one pitch-unit of
a melody.
Any symmetric harmonizati on� as in the
·cases above, must be based on a preselected
u
L ��.
Let us assign the following � (13) and
use it for the harmonization of melody utilized in
the previ ous exampl.es ..
The important considerations
in the following procedure are variation of tension
.
and utilization of enharm onics as partic ipants o f
r (13) (a
',
SUjp.ements an equivalent of g
-:f
13th of a B chord) •
(please see next page)
0
for the
0
0
..
14 .
Figure XXXII.
•
•
, 1
,
-
�
-
•
�
•
�
1
- 1
•
.
5"
q
>• •
I
•
•
. i
'
•
.: =a
�� J;
r
..t
•
p'7
#.:
' ,a,
I•
r a
q ·5
.
.
,
-- ,-,
•
I
•
'
....._
�
-
.I
•
I
.
•
.
.
·1
'
•
Wtt
4:
,,
.
11
•
I
�
q
I�
'
.:
i�
..
¥Z
e
•
.
t,-
,
.I
��
-
'
•
Ii�
•
,,
-p
•
•
•
�
I
��
�
-
•
I riI*r•
I
�
� j�
- .,,.
-
-
-
::; �
.
�-0
..
�
.
Media of