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Subject: Music 

Lesson LVII. • 

VI. Climax and Resistance 
• 

• • 

. . 

• The projection of melody is a mechanical 

trajectory. Its kineti� components are balance, 

impetus and inertia. Resistance produces impetus, . . . 

leading either towards the climax, which is a pt 
• • 

•• 

(pitch-time) maximum with respect to primary axis, or 

towards the balance. The -impetus ·1s caused by resistance 

which results from rotation. T�e geometrical projection 

of rotation is a circle which· extends itself in time 

projection into a cylindrical or Sj.Jher.ical sviral, or 

ultimately (through time ex_ter1sion) wave· motion (plane 

projection). The kihetic result 'of rotary motion is 

centrifugal energy. The discharge of accumulated centri-

fugal energy is equivalent to a climax. A heavy object 

attached to a string and put into rotary motion about an 

axis-point develol,Js cor1siderable energy to move a long 

distance, when detached from the string. 
\ Overcoming inertia increases wechanical 

efficiency (gain of kinetic energy). Any body set to 

move acquires its possible ulti1oate speed in a certain 

�eriod of time. The shorter the period from the moment 
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of the application of the initial fbrce (impetus) till 

the moment whEll the bod¥ acquires its uiti.mate speed, 

the greater is the mecbanicai efficiency of such motion . • 

Motion is expressible in the wave amplitude$ and the 

projection of kinetic climax is the·maximum amplitude. 

Inert matter does not acquire its maxiDJWII amplitude 

instantaneously when starting from balance, Just as the 

max.imum cawot recede to balance (rest) instantane�usly. , 

This concerns both velocities (frequencies) and 

amplitudes. 

Mechanical experiences, v1hethe� i.."lstinctive 

or intentional, are known to all ty�es of zoological 

species and are inherited and perfected through the 
/'f 

I 

course of evolution. A gi,own-up animal has a perfect 

judgwent of distances and directions and of the amount 

of muscular energy necessary to cover them in leaps or 

flights, without any theoretical icnowledge of the law of 

gravity or mechanics in general. There is no misjudgment 

in the monkey•s flights from tree to tree, or a gazelle 

leaving over a creek, or an eagle falling on its prey. 

A certa.in amount of intentio1:1al roechanical efficiency 

and psycho-physiologic coordination is inherent with 

every surviving species of the animal world. The 

relativity of tl1e standards of mechanical efficiency 

corresponds to the relativity of reflexes, reactions 

and judgments. The leaping of a human being over a 14 

' . . . .. 
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foot rod is the highest achievement in the International 

Olym}Jics for 1936, and this with the aid of a pole. The 

mechanical efficienc y of an ordinary flea is fifty times 

greater. A leap of a human being over a rod 50 feet 

high would seem supernatural, while the respective leap 

of a flea would be below any low standards of efficien�y 

( tl1e flea leaps about one hundred times its own size) • 

The standards of mechanical efficiency vary 

wi tl1 ages ar.d places, even among huma11 beings. They 

c.lso vary with different races as v1ell as with different 

ages. The develo�ment of athletic qualities and forms 

of locomotion im�ly the raising of the requirements 

toward the trends of mechanical efficiency. 

Geometrical conception of mechanical apd 

bio-mechanical trajectories necessitates the analysis of 

the corresJ.101,ding tra.jectories of nervvus imvulses and 

muscular reactio11s. There are corres!-'ondences betv1een 

tl1e tv,o, arid the knov;ledge of such correspondences leads 

to scientific _µroduct10r1 of excitors (in tr1is case, 

esthetic: music in ge:r1eral, or welody in particular) 

ca�able of stiwulating the intended reactions. Simple 

reflexes a11d react.1.crls !Jl'oject themselves into simple 

trajectorial !,atterns; on the other hand excitors having 

the forw of sim}'le trajectories stimulate rea.ctior1s of 

tl1e corresi.,011ding simplicity. Likevvise, this correspon­

de11ce tc..tCes 1,>lace with the cow pl ex jJa t terns. 
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The intensity interdependence betv,een the 

excitor and the reaction was formulated in Weber's 

and Fechner•s Psycho-Physiological law. Thus, both 

the configurations (patterns) and the amplitudes 

(intensities) have their corres�ondences between the 

excitors and the reactions. Judgment based on 

mechanical experience and mechanical orientation leads 

. higher animals and human beings to certain expectatlons. 

In the case of an absolute corresponderice betv,een the 

realization of a mechanical �rocess and the expectation, 

the resulting reaction is balance (normal satisfaction). 

A result above expectation stimulates tl1e ir!teri.sifica­

tion of activity (positive reaction) and at its extreme, 

ecstasy. On the other hand, the result of a mechanical 

process whi�h is below exj.1ectati0n stimul�tes �assivity 
. 

(negative reaction) and at its extreme, depression. 

The two opposite poles of reactions, led to their 

absolute limit, stimulate astonishment, (irratic11al or 

zero reaction). 

Geometrical projectior1 of the scale of 

psychological adject_ives on a circumference j)roduces 

the poles of the two rectangular coordinates (the 

diameters of the circle): 1 .  normal - absurd; 

2. depressing -ecstatic. Produc ing four new poles on 

the intermediate arcs of the circumference through 

addition of another pair of rectangular coordinates 
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(under 45° to the original pair) we obtain nine poles 

altogether (including both o0 and 360
°) .  These nine 

poles, through the application of the method of 

evolving concept series, become expressible in adjectives 

standing for the psychological categories. 

Scale of psychological categories as 

represented through geometFical project�on on a 

circumference: • 

The circumference is divided, by the poles 

of the coordinates, into 8 arcs, 45° each. The 

geowetrical poles correspond to the psychological poles. 

Arcs represent the transition zones, and the poles -­

their absolute expression. 

Zero or 360° - abnormal 

90
4 

- infranormal 
0 135 - subnormal 

0 45 - subnatural 

(p lease see next page) 

180 ° - normal 

270 ° - ul tranormal 

315° - supernatural 

225° - supernormal 
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Su bnormaJ 135 ° 

Infranormal 
90° 

Subnatural 45° 

Normal 

1809 

Abnormal 

• 

6 . 

225° Supernormal 

' 

315° Supernatural 
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The psychological zones within the above 

limits between the adjacent pole.s represent: 

The zone around the 0 ° or 360° stimulates 

astonishment (zero reaction or delayed reaction). 

The zone around 45° stimulates either pity 

or humor. 
• 

The zone around 90° stimulates depression 

(pessimism). • 

The zone around 135° stimulates the sense 

of lyricism (regr,et, melancholy [pleasant sadness, 

joyful sadness, controllable, self-imposed sadness]) 

close to positive zone - joy of self-destruction, 

self-sacrifice. 

The zone around 180° stimulates the sense 

-

of quiet contemplation, full psychological balance and 

satisfaction. 

The zone around 225° stimulates the sense 

of heroism and admiration. 

The zone around 270° stimulates the sense 

of exaltation, ecstasy and worshipping. 

The zone around 315° stimulates either the 

se11se of fantastic or the sense of fear (unfavorable 

surroundings, uncontrollable, unaccountable forces, 

fear for existence, struggle for survival). 

A discus thrower participating in the ' 
Olymvics and reaching ·the previous years• record would 

• 
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stilllulate the reaction corresponding to 180 point. 

The actual reflexes of the spectators would be polite 

applause. Throwing beyond the expected range would 

stimulate the reaction corres�onding to the zone 

between 180° and 225°, culminating into ultimate 

ecstasy when it reached 270° (this would be evidenced 

by shput1ng, stamping and whistling, the reactions 

increasing not only in intensity, but in quantity as 

well), i.e., the maximum conceivable limit. The 

clapping reflexes would grow accordingly, from 180° 

to 270� If the disc does not reach the range expected 

the reaction would be disappointment, increasing toward 

135° with the sympathetic spectators, while with the 

range reaching only 90° it would lead ultimately to\vard 

depression. The spectators will not applaud when the· 

range of disc throwing is near the 90° point. It 1s 

natural to assume that certain groups of spectators, 

influenced by their sympathy toward the opponents of 

the first d.iscrus thrower, would produce exactly opposite 

reactions. These considerations cover the semicircle 

above the.horizon. 

The lower zone, on the negative side, i.e., 

between the 0° and ,o0
, stimulates the reaction of 

laughter and in the case of the discus thrower it would 

amount to a range of perhaps onl.y a few yards from his 

position after a iong and corresponding preparation to 
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a throw. When the spectators see a husky, muscular 

athlete deprived of mechanical efficiency they 

unquestionably react to it as seeming decidedly 

humorous. 

On the positive side of the lower semicircle 

between 315° and 360°, lies the zone of supernatural, 

where the range of throw of a disc would be beyond any 

biomechanical possibility. For example, if the range 

of throw amounted to three miles. In such cases the 

presence of a trick or a supernatural force would be a 

necessary ingredient for the logical comprehension of 

the phenomenon. The usual reac.tion would be the 

reaction of smile or laughter transforming into aston­

ishment in the direction of the zero point. 

The 360° point when reached from the 

positive side YOU ld amount to the absurd caused by an 

impossible mechanical over-effioiency. Such would be 

the case v1hen the disc being thrown would never come 

back, or fall anywhere on the ground, vanishing in the 

interstellar s�aces and thus overcoming the law of 

gravity. 

When zero is reached from the negative 

side it would mean an impossible mechanical inefficiency. 

In the case of a disc thrower· it would happen when the 
. 

disc. would slip out of the athlete•s hands before he 

actually threw it. 

• 
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A trajectory expressing a mechanically 

efficient kinetic process, whether a pendulum or a 

musical melody. 11'111 have the mechanical fundamentals 

1n comon. A pendulum carmot start instantaneously 

_at its max1mull ampl1 tude; nei tber can a melody. A 

pendulum cannot stop instantaneously from its maximum 

amp litude; neither can a melodf. The corresponding 
• ' ' 

effects 1n both cases will be either supernatural or 

humorous. 

The actual quantitative specifications 

serl!ing different purposes and expressing different 

forms of mechanical efficiency vary with times and 

places. To satisfy any esthetic requirement one l1as 

to know the style in which such requirements have to 

be carried out, beyond which specifications the entire 

kinetic process, whether efficient or not, will be 

meaningless. As the standards vary, the coordinates 

on the circle described above change their absolute 

positions, i.e., the zero point may move with the 

entire system, either clockwise or counter-clockwise. 

If we would assume, with regard to athletic standards, 

18()° to be a limit of certain mechanical operations 

when the achievement of the following epoch increases 

the quantitative value of normal, placing the point of 

norwality to what is 225° on our diagram, the opposite 

pole of the coordinate will occupy res�ectively the 45 ° 
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position. Referring to music in general and melody 

-in particular, we find certain standards become old .. 
fashioned and we begin to feel that though they may 

be charming yet they are entirely inadequate for the· 

purposes of a more mechanically efficient epoch. We 

feel it in every field concerned with motion, i.e., 

mechanics. 
� 

There is a humorous or a pitiful reaction 

toward the 1900 horseless carriage and it becomes 

still more humorous where there is an accumulation of 

quantities of the symbols of inadequacy, such as the 

prerequisites of travel required by a horseless 

carriage (dusters, goggles, safety belts). We have 

exactly the same picture (i.e., if we are people 

representing our epoch and not living anachronillms), 1n 

melodies composed by a Verdi or a Bellini, where the 

mechani.cal efficiency is so low that it makes us smile, 

if not laugh. The same melodies stimulate entirely 

different reactions among the octogenarians surviving 

in our epoch of 400 miles per hour • 

In order to achieve an efficient climax it 

is necessary to accumulate energy that would be 

effectively discharged into such climax. The means for 
• ' 

accumulating energy, as it was described above, are 
' 

achieved through rotary motion developing centrifugal 

energy. Trajectories ex�ressing musical pitches of 

• 
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various frequencies are heard by the.listeners 1n 

relation to the entire trajectory. It is possible 

not only to show the range of frequencies (such as 

a form of direct trans.itian from one frequency to 

another), but also to show in what way this variation 

of frequency was achieved. The portion of a melodic 

trajectory leading toward the climax, without a 

resistance preceding such a climax, does not produce 

any dramatic effect. It is the resistance that makes 

the climax appear dramatic. A portion of melodic 

trajectory leading from a climax (maximum amplitude) 

towards balance (minimum amplitude) must be performed 

in accordance with natural mechanical laws, i.e., it 

must contain resistance before it reaches the balance 

(compare with pendulum). The inefficiency or the 

excess ot the forms of resistance (rotary motion) 

leads to a mechanical abnormality. Abnormal melody 

stimulates the sense of dissatisfaction or humor. 

The forms of resistance leading toward climax acquire 

centrifugal form (increasing amplitude). The forms of 

resistance leading toward balance acquire centripetal 

form (decreasing amplitude). The relative period of 

rotary motion and amplitudes produces various forms 

and gradations of resistances. For example, the 

period ot rotation may be long, with the amplitude 

reJDa1n1ng constant; or the period of rotation may be 

• 
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short with rapidly increasing amplitudes. The period 

of rotation way be short with the correspondingly 

increasing·amplitude. The duration of the rotary 

.period may be in inverse proportion to the amplitude 

and often the law or squares takes its place • 

. . 

• 

• 

• 
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Lesson LVIII. 

The corresponding forms or resistance as 

applied to melodic trajectories are: 

l. Repetition (correspondences: aiming, rotary 

motion with infinitesimal amplitudes, affirmation 

or the axis level as a starting point). llusical 

rora: repeated attacks of the same pitch discon-

• 

tinued by rests or following each other continuously • 

Pb.Ysical Form Musical Form 

• 

' 

2. one phase r9tation (corres�ondences: preliminary 

contrary motion, initial impulse in archery, 

artillery, springboard diving, baseball pitching, 

tennis service, etc.) Musical form: a movement or 

a group of  movements in the direction opposite to 

the following leap. 
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This form often acquires more.than one phase 

following in one direction which intensifies the • 

resistance. 

. . . - . . . • • • . . __. . . . . . . ---, . . . . . . 

3. Full_p�riodic rotati?B (one or more periods) 

A. Constant amplitude (correspondences: rotation around 

a stationary point, a top, some�saults - with diving 

and without - lasso, axis and orbit rotation of the 

planets, Dervish dances). 

• 

• 

• 
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lilaical Form: mordente, trill, tied tremolo, 

groupetto. 

Jlusical Form 

• 

• 

• 
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• 

B. Variable amplitude (correspondences: giroscope, spiral 

motion, tornado, expansion, contraction). llusical 

form: expanding and contracting, simple and compound 

110tion. 

• 

• 
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Whereas th e preo1dil11 r .... of ,.1e,111·.t.Ni 

require 0ulf, one ot the secondary an•� tbe YU"1able 

· amplitude rotation requires a silliuitaneous oc,llb1nait10D 

of two or three second&l'f axes. ID th1a case 'tbe •Xii 

leading towards cli.JDaz or balance will be coii8idered 
• 

fundamen.ta1 and the other au• - oml 17, 

Simultaneous combinati ona of two axes: 

(a) Centrifugal (expanding): 

Phys,ical Form 
• 

0 

d 

Musical Font 

• 

� I 

-

• 

. 
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C•) Calrlpetel (cODtraot:sng) 

L •·· 

Phf1ic&1 lCU 

• 

0 
b 

• 

• 

Mlsical Form 

• 

• 

Simultaneous combinations of three axes: ' 

(a) Centrifugal (expanding): 

a +  0 + d; d + O + a 

18. 
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(b) Centripetal (contracting): 

b + 0 + c; c + O + b 

Physical Form -. 
a + 0 + d 

d + 0 + a 

b + 0 + c 

c + 0 + b 

, 

• 

Musical Form 

. . 

19 • 
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Lesson LIX. 

As the iz\teryal of a pitch level from 

the primary axis affects tension (gravity effect 

where P.A. is a gravitational field) resistance may 

also result from two parallel secondary axes. The 

complementary parallel axis may be placed either aboye 

or below the fundamental axis. The effect of motion 

through a pair of parallel axes is that of an extended 

trajectory (delayed forced inefficiency). In reality 
' 

it is the usual rotary motion only evolving between the 

two axis-boundaries. 

The correspondences of such mvti0n are: 

raising and falling� zigzag ascending arid desce11ding. 

Musical form: revolving around alternately progressine 

points (ascending or descending). 

(please see next page) 
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The 1, 2 and 3 forms of resistance produce 

the respective degrees of resistance. When more than 

one form is used in successive portions of melodic 

continuity they must follow one another in the 

increasing degrees. The opposite arrangement is 

mechanically inefficient and therefore produces an 

effect of weakness. 

Resistances lead either toward cl�max or 

toward balance. 
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Toward Balance: 

• 
• 

• • • • • • 

• 

• 

- - .. --�-. • -

,. 

ee.. m. 

• r • - • - • • • 

• 

• 

• -

• 

- - - . 

• 

c.e. .:i[ 

-' -

• 

- - • 

• • • 



I 

• 



• 

I 

L 

. • 

Distribution of C1imexes 1n 

Melodic Continuity. 

The distribution of climaxes in melodic 

continuity must be performed with respect to the total 

duration of such continuity. The relative intensity 

of climaxes depends both on time and pitch ratios 

leading toward the respective climaxes. The natural 
• 

tendency 1s the expansion of pitoh and the contraction 

of time. These two components mutually compensate each 

other. 

The climactic gain between the two adjacent 

climaxes takes place when: 

1. The pitch-ratio is increasing and the time-ratio is 

constant; 

2. The time-ratio is decreasing and the pitch-ratio is 

constant. 

The climactic gain reaches its mechanical 

maximUJD when both forms . are combined (increasing 

pitch-ratio and decreasing time-ratio) . 

It is practical to save the last effect for 

the main climax of the entire melodic continuity and t o  

use it only when the extreme exuberance has to be 

attained. 

As the decreasing time-ratio is charecteristic 

of the continuity with a group of climaxes, rhythmic 

.. • 
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material which 110uld appropriately distribute the 

climaxes must belong to the decreasing series of growth, 

such as �•U•NDt'>tion or power series. Smaller number 

values and in inverse correlation serves as material 

for the distribution of the pitch ratios for a group 

of successive climaxes • 

This description refers to a trajectory 

moving towards main climax and must be inverted for the 

opposite direction • 

• 

) 

• 
• 

• 
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Lesson LX, 

VII, Superimposition of the Time-RhYthm 

on the Secondary Axes 

"Beauty" is the resultant of harmonic 

relations . In order to obtain a 11�autitul" (esthetically 

efficient) melody it is necessary to establish harmonic 

relations between its factorial and fractional rhythm. 

This may be achieved by means of a homogeneous series 

of factorial-fracti0nal continuity. Rhythm of time 

durations occurring within the bars lD\lSt belong to the 

same series as the rhythm of the seco ndary axes. 

Naturally, there are hybrid melodies ·where fractional 

and factorial rhythm belong to different series., A 

homogeneous series is merely an expression of stylistic 

consistency. 

Melodies wi th structural consistency may be 

found nearly in every folk lore, as well as in the works 

of composers who synthesized and crystallized the 

efforts of their predecessors. Beethoven crystallized 

the melodic style of the "Viennese School", (which at 

its time was a revolt agains t  counterpoint and poly­

phonic writing). Bach, in his melodic themes, (in many 

cases wi th an odd number of bars), crystallized the 

efforts of several centuries., 

was the source of his ·toomes. 

Mediaeval Cantus Firmus 

• 
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Different styles have different evolu-

tionary velocities. •Jazz" having a veey high one, 

(like some of the specimens of the Alpine flora with 

a veey short 11fe-span), has already crystallized its 

homogeneity. Examples are numerous and may be found 

more in the •swing• playing than in the printed copies 

of the songs • 

After the series has been selected, the 
• 

actual composition of the fractional continuity may be 

accomplished in  two ways: 

(1) by using the resultants or the power groups, 

(2) by composing freely from the monomial , binomials, 

trinomials and quintinomials of a given family, 

(see "Evolution of Style in Rhythm"). 

An example of composing fractional 

continuity 1n ¼ series: 

Suppose we have a trinomial of the 

Secondary axes, a2T + bT + cT. In this case 4T ; 16t. 

To satisfy 16t we may use r , or 
4+3 

(2+1+1 ) 2 
4 , or any 

of their variations, i.e. , the permutations or the 

resultants. 

A free composition according to (2) may 

give results identical with some of the variations. 

The groups of the ¼ series are: 

• 

I 
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monomial . . .  4 

binomials . • •  3 + 1 and 1 + 3 

trinomials . •  2 + 1 + 1, 1 + 2 + 1 and 1 + 1 + 2 

the· uniform quadrinomial • .  1 + 1 + l + 1 

Deciding upon a2T being (3+1) + (2+1+1), 

bT being 1+1+2 and cT being 1+3, we obtain r
4

+3. By 

selecti.ng freely various recurrences of the same 

binomial, like 3+1, we obtain: a2T = (3+1) + (3+1), 

bT = 3+1, cT = 3+1, or various recurrences of the same 

trinomial ·nith variations, like: a2T = (2+1+1) + 
. 

+ (2+1+1), bf = 1+2+1, cT = 1+1+2, we obtain groups 

that are not identical with the resultants or the 

power groups. 

When a climax is desired the maximum time 

value wust be pla ced at the corres�onding point of a 

Secondary axis (in � at tl1e ez1d, ir1 J?. at the beginning, 

in .£ at th e beginning arid in £ at t.l'1e end). For 

instance, if a climax is desired on a2T, it must be 

the last term of a rhythmic group of this axi s .  In the 

4 • i· t ld 4 series wou be: 
, a2T = (2+1+1) + (1+3) 

or (2+1+1) + (1+1+2) 

or (2+1+1) + 4 and the like� 

To superimpose a fracti onal rhythmic group 

on a factorial gro up of the Secondary axes, means to 

• 

• 

• 
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distribute the points of attack on a pitch trajectory 

(the path of a moving point). 

Let us assume th�t a gro�p of secondary 

axes has been constructed with no reference to any 

particular logarithmic (tuning) system. Placing the 

pre-selected fractional group above the axes and 

dropping perpendiculars from the points of attack, we 
• 

accomplish the distribution of the points of attack 

(which become the moments of attack) along the pitch 

trajectory of a hypothetic tuning system • 
• 

Example 

a2T + b'f + ct =  (2+1+1) + (1+1+2} + (1+2+1) + (1+3) 

16T 

4T ' 1 I l I 

2T+T+T I l r l 

I I l I r l r t r • 1 r I I &&$ 

• • • • , • • • t , ' • • t • • ' • • ' . • • • 1 • • • 
1 • , ' • • • • • • ' • • ' l • , ,, • • • � ' 

• ' 
' 

/ I • 
r 
• 

• 
• 

Thus, the red point·s are the moments of attack on 

this pitch trajectory. 
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Here we arrive at the following definition 

of melody: melody 1s a resultant traJectorz of the 

axis-group moving through the points or attack, 

Melody, 1n the academic sense, 1.�. , with sudden pitch 

variations within a t1Jning system., ·is a rectangular 
• 

trajectory. Melody., in the Oriental conception., as 

well as in any musical actuality., is a curvilinear 

trajectory, i.e., containing a certain amount of pitch-
' 

sliding. We shall deal with composition of a melody 1n 

the academic sense as our musical culture leaves the 

bending of a rectangular trajectory to the instrumental 

performer. 

As the secondary axes form triangles (with 

respect to primary axis), two forms of rectangular 

motion through the points of attack are possible : 

(1) ascribed (sin phases) 

(2) inscribed (cos phases) 

Though in c omposing melody a free choice of the two may 

take place, in balancing melody at its end on b or c - -
axes, the ascribed motion produces an incomplete (i.e., 

unbalanced) cadence, while the inscribed motion produces 

a 9omplete (i.e. , balanced) one. The first one is a 

device for deviating from balance, i.e;, for accumulating 

ter1sion, a stimulus for the new recapitulation. 

Examples of rectangular trajectories evolved 

through the axes of the previous example: 
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Example II - Inscribed Motion 
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35. 

These two potential melodies are 

totally different in their pitch progression. The 

usual, commonplace compositicn of pairs varies with 

respect to the cadence only. Such pairs may be 

either inscribed or ascribed, but must be identical 

othe;rwise; the ending of the first one is ascribed, 

while the eming of the second - insc.ribed. 

.. 
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J O S E P H S C H I L L I N G E R 

C O R R E S P O N D E N C E C O U R S E 

Lesson LXI. 

Subject: .Music 

VIII. Superimposition o f Pitch-Rhythm 

(Pitch-Scale) on the Secondary Axes . 

Unifo rm time-intervals (duratio ns) being 

geometrically pro jected produce space-intervals, 

( extensio11s) . Such uniform time seal.es are primary 

selective systems v1hen T ::: r a+l · When b f l they 

beco me secondary selective systems, (rhythm-scales) . 

Unifo rm pitch-intervals of our tuning system 

produce lo garithms to the base of 1� (semito nes) . 

Chromatic scale is the primary selective system of pitch 

in our into nation. Geometrical projection of sucn scale 

is a uniformity along tne ordinate. Any other pitch-

scale within the same tuning system is � secondary 

selective system, (i.e., a derivative of the primary 

selective system ) .  • 

It is easy to see that a pitch-time trajectory 

m oving in either ascribed o r  inscri bed fo rm of moti on 

through the points of intersection of time (abscissa) 

and pitch (ordinate) unifo rmities (primary selective 

s,steos) , is (structurally) the simplest form of melody, 

i.e., a chromatic scale in uniform rhythm . 
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2. 

Here we arrive at the followi11g definition 

of melody: melody is a pitch-time trajectory resulting 

from the intersection of the points of intonation 

(��tch-units) with the points of attack (time-points) 

in a specified axis-system. 

When the geometrical points of intersection 

do not coincide with the pitch-units of a scale, pitch­

units nearest to th e coincidence-points must be used . 

Let us superimpose an Aeolian scale 

(2+1+2+2+1+2) on the axis-group illustrated in the 

preceding chapter. Let us assume a2P + bP + cP, i.e.,  

a parallel PT correlation. And let P = 5,  which in 

this case gives a symmetric distributio11. Let furtl1er, 

.f.ii tch c be the _prims.ry axis. Then a2P exterids from -
£. to .Ql, , bP from .f. to £. a11d cP from _g_ to £.. 

a.xis grou.1-1: 

I 

Here is the final cvnstructio11 of tne 

• 

Scheme of the Points of 

Geometrical Intersection. 

---.,.--,. 
! 1 

• 

• I ' • . . t: .!.� I • I f I • • 
' . n-f1. .. � .. !:.r � • • j -
l � L 1 I ' . 

l • 
-•· ' 

/""- -� "- I i -
-ti - ' I .. _.__ .J ' • • ' I ... 
I . • ,. ---L 

!/.. 

:) .,. -- r ... --.. r- I t-

'- -, I ' 
' -- - . ..... 'T 

J..,.. -- ' • • . .l. .• I I 
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3. 

This diagram produces a slight deviation 

from the description given in the text, due to the 

fact that the scale is small enough to give deviations. 

However, this is not essent�al as further adjustments 

follow the scale. -
The next step is to adjust the �oints of 

intersection to the Aeolian scale. Let us analyze 

point by point • 

If the first point of intersection is £, 

the nearest pitch-unit to the second 'point of inter­

section on the Aeolian scale is £• Next, we select 

e P  as the nearest to the third intersection-point. 

The fourth falls exactly on f.  The fifth falls on r '#  - -
whicl1 is not in the scale. In this case either the 

repetition of £, or g is available. Next point is 

nearest to g. Through ascribed motion the entire axis 

a would start on d and end ori b �. - - -
As in inscribed motion, pitch-�evels move 

toward the points of 

unit on b- axis will -
intersection; tl1e first pi tch- . 

be either f or e�, as the geometrical - -
intersection coincides vii th � ,. The 11ext intersection­

point is nearer tc d .  In order tu coruplete b- axis - -
through inscribed wotion it will be necessary to consider 

£ as the last intersection �oint. C- axis thrcugh the 

inscribed motion gives its �oints of intersecticn at 

a '  and c. - -
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4 .  

We shall reconstruct now ��e axis-group 

with respect to the Aeolian scale, as Just described, 

and draw an inscribed trajectory. This trajectory is 

the most elementary form of an actual melody. 

. 

• 

. 

. 

C. n c. •- ;_ ,, ''!" "' . . ',- . ;. . ' 
·� 

. ' 
• , • 

j t::J c:::! I -
i 

I 
I • I I g -4• • 

• � .. • . 

It would not be difficult to find all 

other versions, i.e., the ascribed trajectory and the 

trajectories where either axis may ba realized in 

ascribed or inscribed �otion. • 

• 

• 
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Axes : 

Here is a chart of combinatioris : 

a 

ascribed 

ascribed 

ascribed 

i11scribed 

inscribed 

inscribed 

i11scribed 

ascribed 

b 

ascribed 

ascribed 

inscribed 

ascribed 

inscribed 

inscribed 

ascribed 

inscribed 

ascribed 

inscribed 

ascribed 

ascribed 
•• 

inscribed 

ascribed 

inscribed 

inscribed 

There are eight versions altogether. 

5. 

After obtaining an actual melody, such melody becomes 

a subject to scale variation, tonal and geometrical 

ex1,181siu11s and inversions. For instance, the same 

melody in a "blue" scale wo uld sound : 

' 

• 

• 

or in a Chinese ( 2+3+2+2) scale (through 

the translation of the corresponding degrees) : 

(�lease see next page) 
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• 



I 

• 



• 
• • • 

• 

-

• • 

• 

• 

• 

• 

I I _L � 
, .• .,. -

j ., � � .. 
• �· 

Here an allowance has to be made on the first note 

of the last bar, as the VI does not exist in the 

Chinese scale, (substituting it by the last degree 

of the scale, i.e., V, which is ,!!). 

, 

6 • 
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Lesson LXII. 

"100s t 

IX. Forms of Trajectorial Motion 

The trajectory obtained above was called 

elementary for1n of an actual welody 11 because 

7.  

its form of motion is simple harmonic, (i.e. , scalewise) 

motion. According tu Chapter VI, such melody cannot 

be too expressive or dramatic. In order to obtain an 

expressive melody it is necessary to build resistances. 

This cannot be realized without introducing more 

com�lex forms of motion. 

We shall present now all the trajectorial 

forms with respect to the zero axis. 

( 1) Sin wotion with constant awplitude: 

• 

(2) Cos motion with const&nt amplitude : 

(3) Combined sin + cos motiun with constar1t awplitude: 

• 
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8. 

(4) Cowbined cos + sin motion with constant amplitude : 

�"<...:.___7�.__-.7.c::::>-

• 

( 5) Sin rootio11 \'Ii th increasi11g amplitude : 

c:::::::::-,,, 

(6) Sin motion with decreasing awplitude: 

(7) Sin motion with combined il1c.reasing-decreasing 

amplitude: 

' 

' I 
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• 

(8) Sin motion with combined ciecreasing-increasing 

amplitude ; 

• 

(9) Cos motion as (5) : 

(10) Cos motion as (6) : 

' 
• 

(11) Cos motior1 as (7) : 

• 

• 
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• 

(12) Cos motion as (8) : 

• 

• 

(13) Combined sin +  cos motion with co.u1bined 

amplitude as (5) : 

•• 

(14) Combined sin + cos motior.1 with cowbi11ed 

amplitude as (6) : 

(15) Combined sin + cos motio11 v11. t .. 1 co1ubir,1ed 

amplitude as (7) : 

10 • 
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(16) Combined sin + cos motion with combined 

amplitude as (8) : 

(17) Combined cos + sin motion with combined 

amylitude as (13) : 

(18) Combined cos + sin motion with cowbined 

amplitude as (14) : 

(19) Combi11ed cos + sin motion with combir1ed 

aruylitude as (15) : 

11. 

• 
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(20) Combined cos + sin motion wi th combi11ed 

am.Plitude as (16) : 

These twenty versions are werely variations 

of the two original forms, . 
(1) ai\d (5) . Every l. .e. ' 

. 
© of the sin a11d every decreasing amplitude cos l.S 

. 
G) of the increasing aw�litude • l.S 

Furth er uevelo.t1ment of tr1ese traj ectorial 

forms may be obtair1ed through ap.iJlicatio11 of the 

coefficients of recur·rer1ce of the sir1, tl1e cos an<i t:t1e 

growth of aw_pli tudes . For instar1ce, 3 sin + cos + 

+ 2 sin + 2 cos + sin + 3 cos on constant arcvlitude:  

c:'\ .c::\, 
, \J �V�'\7 'CJ 

The same case on increasing amplitude: 
• 

• 
• 
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13 . 

All these forms being transformed into 
• 

rectangular trajectories, with respect to a definite 

intonation (tuning) system, become actual i11tonaticn­

groups, i.e.,  melodic forms .  For example, a group�!to 

is sin + cos witl1 constant amplitude. 

IncludiI1g the zero of pitch variation, 

(absolute zero-axis trajectory) , we have the following 

forms of trajectorial motion: 

(1) constant �itch trajectories (repeiitioI1 on 

extensior1) . 

(2) sin or cos. trajectories (one phase moti0n). 

(3) combined trajectories (full period wotion or 

rotatior1) . 

Application of various tr�jectorial forms 

to !!., .!2_, £ and £ a.Xes gives the follov1i 11g correspon­

dences . All the sin of O remain sin on all other 

axes . All the cos of O rewain cos 011 all other axes.  

All the combir1ed forms of O v1ith respect to sin, cos 

and the co11stancy of amplitude remain respectively tl1e . . 
satne ort all other axes. Zero axis is tr1e only one to 

be heard. The rest are ruerely hypotl'1etic lines. 

Here is an example of the corres�onding 

transla tio11s of a curvilinear sin tra jectory into 

recta11gul&r trajectories of the o, a, b, c and d - - - - -
axes . 
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Translations of the cos trajectory: 

-u, r·u 
, 
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, 
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• . 

Translations of the combined trajectory: 

(1) With continuous tangency! 

, . • • 
• • • 

• • 
• • 

• 
• • 

• 
• 

• 
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(2) With out continuous tangency: 

• 

(1) may be called revolving trajectories. 

(2) may be called crossing trajectorie�. 

16. 

Devi&tion of a rectangular trajectory from 

its corresponding axis signifies inco11s istency and 

lowers the esth�tic value of a melody. 

An esthetically efflcient melody must 

uisplay, besides consistency, a variety of the forms 

of motion. 

When a trajectory is controlled by the 

two simultaneous axes (fundamental and complementary), 

the points of attack may fall on either a.xis according 

to the form of alternation . 

(please see next vage) 

• 

• 
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Example 

I I 

.. 
• 

, 

...... 

.... .. • 
... 

• • ....... 
• 

The form of alternation is subject to distribution, 

i.e . ,  rhythm. 

An example of analysis of the trajectorial 

motion in J .s .  Bach 's  Two-P�_rt Ipver1t�on, l�o . 8: 

✓ 

" 

• 

' 
,, 

.. .. .. ► -.. • .. : 
-.. � 

- • 
,- J ..... • .. 

j "J' . ... • • 
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• 17 . 

The staccato eighths are expressed on the graph as 

sixteenths. 

This trajectory has a primary axis 

defined by its first, last and two intermediate 

attacks. The group of the secondary axes is : � +  b. 

The pi tcb a.."ld time ratios are uniform, 1 .e. ; 

�PT + bPT . The first attack of b is a climax . - The 
0 '-
form of motion on � is sin motion with increasing, 

(centrifugal) ,  amvlitude. The alternation of the 

points of attack on the two conjugated axes is uniform. 

The form of motiun on Q is combined (sin + cos) and 

has a constant amplitude. It is ascribed with respect 

to b .  The effect of revolving due to the combined 
• • 

form vroduces a resistance and delays the balance • 

This melody v10uld lose 10ost of it s esthetic value if 

the o-axis were eliminated (loss of resistance moving 

toward tl1e climax) ,  and the b-axis would have one-phase 

motion. 

At this point it would be very advisable 

to wake a thorough analysis of the outstanding as well 

as the deficient themes taken from the existing music . 

This }-lrocedure must follow all the nine cr1apters of 

the theory. A precise statement must be made on each 

itew, (reghrding the form a11d the measurement) . 
• 

Though a theme of any dimensions (durati0n) 

' 

• 

• 
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18. 

may be constructed to full satisfaction it is more 

practical in most cases to compose continuity out 

of a short original structure. Memory is very 

limited and the latter will produce an effect of 

greater unity • 

After having enough experience in analysis 

one may start com�osing melodies according to this 

theory. Success depends upon thorough lmowledge of 

all the precedi11g material , and a bility · to think • 

• 

• 
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X. Composition of Continuity 

19. 

Melody plotted according to this technique 

has the following properties:  

l. Permutability of the secondary axes with their 

respective melodies in time continuity. 

2.  Permutability of the individual pitch-units 

(preferably through circular permutations) 

pertaining to one individual secQndary axis. 

• 

3. Geometrical convertibility of the entire melody . 

4.  Geometrical convertibility of the portions of 

melody pertaining to the individual secondary axes 

or any groups thereof. 

5 .  Tonal expansion of the entire melody. 

s. Tonal expansion of the portions of melody pertaining 

to any individual secondary axis or portions thereof. 

In this case different axes may appear with different 

coefficients of expansion. 

7. Combined variati ons of geometrical inversions and 

tonal expansions applied to the entire melody. 

8 .  Combined application of geometrical inversions and 

tonal expansions applied to the portions of melody 

pertaining to individual secondary axes or any 

combinations thereof. In this case different 

coefficients of expansion may be combined with 

different geometrical inversions. 
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Continuity may be composed through any 

of the abovementioned forms of variation or any 

combination thereof. 

Here is an example of the quantitative 

development of melodic continuity from the original 

theme. Let us take a trinomial axial combination, 

20. 

• 

a, b, c. Each of the individual axes has four 

geometrical inversions. Thus, the number of combina­

tions of the three axes being used in identical or 

different geometrical inversions · equals 43 = 64. 

This number refers to one constant E. If any of the 

individual axes appears 1n  three forms of tonal 

expansion, the entire quantity will be 6 43 = 262,144. 

• The following is a method of indicating a 

secondary axis where the geometrical positions and 

the coefficients of expansion are specified. For 

example, an axis .!. in position © in the second 

expansion (E2) may be expressed like this: 

A trinomial axial-combination consisting 

of a, b and c axes, with specified time and pitch 

ratios, and the geometrical positi ons and coefficients 

of expansion, assumes the following appearance: 
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Time ratios: 2 + 1 + 1 

Pitch ratios: 1 + 2 + 3 

Geometrical positions: @ -, @ ,  � 

Coefficients of expaz1sion: E0, E
2

, E,  

aP2�0 
+ bT2P�2 + cT31W '

· 

21 . 

This method of indication emphasizes not 

the axial structure alone, but the pitch-units 

(intonation) as well. For example, a melody in its 

third displacement, on the axis a, 1.n position @ ,  

in the third expansi on, may be expressed as follov,s: 

When this method is systematically applied, 

the sequence of the dif ferent displacement phases, 

with regard to consecutive secondary axes, may assume 

different forms of distribution. For exawple, it may 

start with the first phase within the first axis, with 

the second phase \vi. thin the second &xis, with tl1e 

third phase within tre third axis, etc. It may follow 

a rhythm of any resultant or any of the series of 

growth·: 

Naturally, the rhythm for such variatio11s of motif 

• depend upon the numb er of pitc:t1-units within tl1e 

motif. 
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The ability of producing expressive 

melodies (themes·) does not make a great composer. 

The ability of producing an organic continuity out 

of original thematic material does. 

Going back as far as to the strict style 

of counterpoint written to a cantus firmus, we find 

that composition of continuity is based on uniform 

factorial periodicity. The theme regularly appears 

in different voices and that keeps the music moving. 

In all elementary homophonic forms, , 
continuity is based on com.Position of biners 

(a, + a2), usually similar structures with different 

endings, consisting of 4 + 4 or 8 + 8 bars. Next 

comes the method of terners, i.e., a , + b + a2 , intro­

duction of the new material in tl1e center. 

The most advanced forms in the past were 

offered first by J.S. Bach, who us ed a sequence of 

biners in  contractir1g geometrical progressio11s (see 

Fugue V, Vol. II, Well Tem�ered Clavichord). In his 

case it meant that a greater overlapping, (stretto 

between the the we and the reply), occurred wi tl1 each 

following announcement • 

In Beethoven ' s  case it meant a co11tinuous 

breaking u_p of the original biner. 

All tl1ese forms of 

past), are rigidly a ttacl1ed to 

continuity, (in the 
2 the 2 series. 

I • 
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Richard Wagner built his continuity 

according to the script, i.e., the operatic libretto. 

Though he wrote them himself, and was quite skilful 

at it, musical continuity greatly suffered from this 

syntactic dominance. Wagner•s faults were adopted as 

virtues by Scriabine and others. Literary influence, 

toget.�er with linguistic logic and syntactic (propo­

sitional) technique were the factors that delayed, 

if not prevented, the sound development of the forms 

of musical continuity. (See the de'firii tion of 

program music in The Oxford History of Mus ic , Vol. 6, 

Page III, which says: "Prograw music is a curious 

hybrid that is music posing as an unsatisfactory kind 

of poetry"). 

Forms of musical continuity are purely 

quantitative and pertain to motion. They are bio­

mechanical, i.e., they are forms of grov,th. When 

they grow norwally, tr1e y survive better. It is pure 

Darwinism: struggle for existence, the survival of 

the fittest . A star-fish is not "just a pretty 

pentagon" but an organic form evolved through the 

necessity of efficient functioning. 

Many an unpretentious melody is appealing, 

i.e., esthetically efficient, due to the fact that 

within ��e eight-bar structure certain processes 

evolve in a very consistent manner. It happens quite 

,· 
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24. 

often that ih soille cases the efficiency of structure 

is greater in sinaller portions and smaller in greater 

portions and vice-versa. 

The bio-mechanical forms are priIDarily 

concerned with three basic factors: 

(1) Symmetric develo�ment, i.e., the axis-inversion. 

(2) The ratio of growth, such· as summation • 

(3)- Movement with res�ect to tension and release 

resulting in balance, i.e. ,  an arithmetical or 

a geometrical mean . 

Growth alorig the a.xis of symmetry ( compare 

wi th a human body, with its growth along the spinal 

cord) , is a continuity formed by geometrical inver­

sions of the original structur e or its portions, 

(melody) , along tile primary axis.  The regularity of 

recurrence of the different inv ersions is subjected to 

rhythm . Pitch expansions ( tollal and geo metric al) , 
, 

combined v,ith their geometrical inversior1s may be used 

as components of musical continuity. 

The mos t fluent form of continuity results 

from the symmetric growth along the time-axis.  This 

is the mos t complete form of continuity as it 
. 

exemplifies birth, grow th, maturity , decline and 

death, all in one process. To accomplish this it is , 

necessary to split the origin&l structure i11to a 

number of elements (such as bars or secondary axes) , 

to show these elements in their gradual addition, and 

• 

• ' 
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then in their gradual subtraction. 

Suppose we have a three-bar structure 

and split it into a, b, c elements* Gradual 

addition of the elements will give : a +  ab + abc. 

Gradual subtraction of the elements \Vill give: 

25. 

abc + be +  c . The cowbination of the two forms --

the time-axls on abc. The entir e continuity will 

be this: 

Exau1 _ple s 

• I -
� 

a +  ab + abc + be +  c 

• 

' • 

The origir1al structure split il.1to 

three elements : 

• I 

T • 
j I I . , 

• 

Cor1tinuity composed thro ugh the time-axis. 

• • 

*' j 
ij 

j 

� 

� 

• ' " " • • • 
' 

I 

The �rocess of summation. may pertain to 

the precedir1g procedure, as well as to factorial 

ratios of the secondary axes, or the number of 

• 

C. 

, 
j 
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individual attacks. 

An example o f  summation through the 

first summation series based on the time axis. Let 

us tak·e an eight-bar structure and split it into 

a b  c d e f  g h elements� The continuity will have 

thls form: 

a +  ab + abc + abcde + �bcdefgh + defgh + fgh + g h · +  h . 

The entire structure moves acDoss itself through its 

ovm axis, while time goes on. 

The next point is obvious. · Using the 

same series for the T of the secondary axes, we 

obtain : 

T + 2T + 3T + 5T + 8T + 5T + 3T + 2T + f 

whatever axis (o, a, b, c or d) each term may represent. 

Summation through the number of individual 

attacks may be found in many melodies. Take the · 

popular song, "One-Two, Button Your Shoe ", for instance. 

The first eight bars give the following summation of  

attacks: 2 + 4 + 6 + 12, i.e. , 2 + 4 = 6, and 6 + 6 = 12. 

It means there are four distinct sub-structures, each 

containing the number of notes in this part icular 

summati on, carried out with an absolute precision. 

It is important not t0 confuse the rhythm 

of attacks wit h  the rhythm of durations. 

The method of  summation is very flexible, 

and with a little initiative one may accomplish a 

• 



I 

• 



• 

• 

-· . . ... . . . . . 

great deal of v ariety. 

, 

In the song, "But I Only Rave Eyes for 

You", you find the following scheme of attacks; 

6 + 9 + 6 + 3. This is an incomplete form of 3 + 6 + 

+ 9 + 6 + 3, where the central term is the result of 

summation 3 + 6 = 9. At the same time, the central 

term becomes an axis of time symmetry. • 

MovEIDent, with respect to tension and 

release, resulting in balance may refer to factorial 

or fractiona l time-rhythm as well as to the rt1ythm 

of the number of individual attacks. Arithmetical 

mean is the most common device in thi s case. 

An arithmetical mean is the quotient of 

the division of the sum, by the number of elements .. 

With two elements, a and b for example, it equals 

a+b 
2 • Musical intuition has a certain amount of 

precision, and 1n some cases these means ca»e out with 

a very good approximation. For example, in the first 

3 ¼ bar structure of "Stormy Weather", the first sub-

structure has three attacks, the second -- seven, and 

the third -- four. The exact number fbr the last sub-

structure would be 3+7 _ 5 2 - ' not 4. This is a very 

good amount of approximati·on, only 20 percent of 

error. Yet you get a greater satisfaction by adding 

one more attack. Try it by making a triplet out of 
• 

• 

.. 

• ' 

' 
I 

• 
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two eighths at the beginning of the third bar. 

This procedure 1s adequate mechanically 

to : under balancing - overbalancing - balancing, or 

overbalancing - umerbalancing - balancing • • 

• 

• 

! 

• 



I 

• 



.. 

29 . 
• 

Les son LXIV. 

The following graphs and music serve as 

an example of composition of melodic continuity. 

Each example is a complete musical composition 

written for an unaccompanied instrument. This art 

has been greatly neglected today. In the XVII and 

A'VIII Centuries, composers possessed enough technique " 

to accomplish such tasks. J .. s. Bach wrote manv 

outstanding works, even so11atas, for violir r· v1ola 

da gamba alone. Today only a very few high ranking 

composers like Paul Hindemitl1 (Suite for Viola alone) 

or Wallingford Riegger, an American, (Suite for Flute 

alone, in seven movements) have dared to write a whole 

opus for an unaccompanied instrument. 

The three compositions I offer here are 

constructed from the scales of the First Group. 

Each graph represents a theme originally plotted.  

Musical examples are complete compositions developed 

by means of variation. 

The notation is as follows: 

M -- the entire melody 

a, b, c, d -- portions of melody pertainirig 

to the respective axes 

• 

• 

• 
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• 
• 

0 

• 

a•  b •  c •  dt 

a ' b ' c ' d 

or  

-- parallel binary axes 

©, @ ,  @ , @ -- geometrical positions of M 

or of the respective axes 

Po, P , , P
2

, • • •  -- permutations of pitch-units 

30. 

of M or of the respective axes 

E0, E,, E
2
, • • •  -- tonal expansions of M or of 

the res�ective axes 

In this form of notation each original 

melody (the theme of the composition) appears as 

M@ p0
E

0 • 

It is advisable to be co11servative in 

plarming a complete .i.u€lodic continuity, as ap�lica­

tion of too many variations at a time ( i.e., p, E 

and the geometrical positions) incre�ses the 

complexity of the e11tire composition beyond the 

listener•s grasp. 

f 

(please see following pages) 
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