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Lesson CXLVIII. 

THEORY OF HABMONIC INTERVALS 

(Intrpduction to Counterpoint) 

A sequence of two pitch-units produces 

a melodic interval. A simultaneous combination of 

two pitch-units produces a harmonic interval. The 

technique of correlation of simultaneous melod.ies • 

de_pends er1tirely upon the composition of harmo11ic 

intervals. Any number of simultaneous parts (voices) 

in counterpoint are formed by the pai'Fs. These 

pairs may be conceived as voices immediately 

adjacent in pitch, as well as in any other form of 

vertical arrangement (i.e. over 1, over 2, etc.). 

The success of harmonic versatility of 

counterpoint depends upon the manifold of harmonic 

intervals used in a certain style. Limited quantity 

of harmonic intervals results in limited forms of 

the harmonic versatility of counterpoint. Thus, t:t1e 

study of harmonic intervals becomes one of the 

important prerequisites of counterpoint. 

Harmonic intervals have dual origin: 

1. Physical 

• 2. Musical 

' . 

Tl1e physical origin of harmonic intervals 

leads back to the simplest ratios. The musical origin 
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16. 

of intervals is based on selective and combinatory 

processes. All semitones, i.e. units of the equal 

temperament of twelve, are the structural units of 

all other harmonic intervals available in such • 

equal temperament. As they appear in our hearing, 

they amount to the following forms: 

i = 1, i = 2, i = 3, i = 4, 

i = 5, i = 6, i = 7, i .= 8, 

1 = 9, 1 = 10, 1 = 11, 1 =.12 

This completes the entire selection 

within one actave range. An addition of intervals 

to an octave produces musically identical intervals 

over one octave, as the similarity of different 

pitch-units within the ratio of 2 to  1 is so great 

that they even have identical musical names. The 

system of musical notation introduces, among other 

forms of confusion, tl1e dual system of the interval 

nome.nclature., Thus, an interval containing three 

semitones may be called either a minor third or an 

augmented second. 

Simple ratios of acoustical int.ervals are 

merely approximate equivalents of the harmonic inter-
' vals of equal temperament. It is not scientifically 

correct to think the way the majority of acousticians 

do, that a 5 to 4 ratio is an equivalent of a major 

third or a� to 5, of a minor third, or a 7 to 4, of 

• 
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a minor seventh, etc., as these intervals deviate 

considerably from their equivalents in equal 

temperament. 

17. 

It is utterly impossible to follow the 

methods established by some acousticians in studying 

the type and quality of intervals in the equal 

temperament of twelve as compared to their equiva

lents in the simple acoustical ratios* The so-called 

consonance is a totally different type of intervals 

musically or acoustically. If music had to use ' ., 

acoustical consonances only, yet being confined to an 

equal temperament of twelve, the only real consonance 

would be an octave, i.e. no two pitch-units bearing 

different names would ever be used, and we would 

never have either any harmony or counterpoint. The 

reason for this is th.at no other intervals than an 

octave or a perfect fifth, with a certain allowance, 

are consonances within the equal temperament.. All 

other intervals are quite complicated ratios. Thus, 

the art of music has its own possibilities based on 

the limitations within a given manifold of our tuning 

system. 

Acoustical consonances produce a so

called natural harmonic scaj..e, which consists of a 
0 

fundamental with all its partials appearing in the 

sequence of a natural harmonic series (i.e. 1, 2, 3, 
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4, 5, 6, 7, a, 9, etc.) . The ratios of acoustical 

consonances are equivalent to the ratios of 

vibrations producing pitches. For example, a .£ 2 
ratio means that if the actual quantities representing 

both the numerator and the denominator were 

multiplied by a considerable number value, they 

would actually sound as pitches. While 3 

2 , as suc,h, 

sounds to our ear as the resultant of interference 

of 3 to 2, igg cycles per second sounds to our ear 

as a perfect fifth. 

Figure I_. 

t7 :Jt:f:1: ti If 2.o 

� 4. ,:- '1 « q 10 -ti. 11. ( .£. I a. J2. p� 
t"l -

- r i -L -

-

Our ear accepts pitch-units and their 

ratios as they reach said ear and the auditory 

consciousness and not as they are induced upon us 

in the traditional musical schooling. For example, 

- .(I-___ ,,,,,,,, -
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a melody played simultaneously in the key of c and 

in the key of b next to it, or a seventh above, 

sounds decidedly disturbing to musicians of our 

time. Yet an interval that is musically identical 

is acoustically so different that being placed 

three octaves apart it produces a musically consonant 
• • impression . The reason for this is that in such 

absolute intervals as seventh three octaves apart 

approximates the the 15 to 1 ratio, 1.e� the sound 

of a 15th harmonic in relation to its fundamental. 

And when the pitches are so far apart the deviation 

from equal temperament becomes less obvious for our 

pitch discrimination. The following tables offer a 

group of examples illustrating musically consonant 

intervals which are usually classified as dissonances, 

and with their correspondence to the proper location 

of harmonics. In all these cases no octave 

substitution can be made without affecting the 

actual state of consonance. 

Figure II • 

(please see next page) 
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Likewise, musical consonances being 

placed into a wrong pitch register, such as low 

register, produce upon our ear an effect of musical 

dissonances. The reason for this is that being an 

approximation of simple ratios they require the 

placement of their fundamentals at such low 

frequencies that they are below the range of 

audibility. For example, a major third being associated 

with i ratio would require that the fundamental be 

located two octa�es below the fourth h�rmonic. Music 

being played in major thirds in the contra-octave 

simply would not permit the physical existence of 

such fundamental. 

The following tables offer three 

examples of the low setting of intervalsr 

Figure III. a 

(please see, next page) 
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(Fig. III) 
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With this understanding in mind we can 

see that no serious theory of resolution of 

dissonant intervals may be devised without specifica-
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tions to exact octave. locati on of the i nterval. 

Thus, when we come to the theory of resolution of 

intervals it wi ll merely be offered for the purpose 

of the versati le treatment of the prog ressi ons of 

harmonic intervals-, and not for the purpose of 

exterminati on of dissonances. Esthetically as well 

as physiologically we desire sequences of tension 

and release, and as different harmonic intervals 

produce different degrees of  tension the versatility 

of the sequence of i ntervals wi ll satisfy such 

requirements. 

It has often beeB-.1. the case that music 

written according to the rules and regulations of 

the dogmati c counterpoint does not sound esthetically 

as convincing as its counterpart in the XVI or XVII 

Century. This inferior quality is due to the 

limited quantity of harmonic intervals and the forms 

0£ treatment of the latter. 

A. Classification of Harmonic Intervals 

within the Equal Temperament of Twelye 

All harmonic intervals may be classified 

into two groups: 

1. With regard to  their density. i.e .. the 

fullness of sonority, and 

2. With regard to their tensi on, i.e .. their 

dissonant quality. 
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Classification of density evolves from 

the intervals producing the emptiest effect upon 

24 • 

our ear up to the intervals producing the fullest 

effect� The following table is only an approximate 

one; nevertheless, it serves the purpose with a 

certain degree of approximation, 1. e� the first few 

intervals sound decidedly empty and the last few 

sound decidedly full, while in the center there are 

a f ew intermediate ones • 

Figure IV. 

• • 
• 

Classification of tension is based upon 

the separation of consonances from the dissonances 

and the separation of the consonances and dissonances 

by nam.e from the consonances and dissonances E,Y. 

sonority. All cases when consonances and dissonances 

correspond respectively by name and sonority imply 

the diatonic intervals� And all cases when 
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consonances and dissonances do not correspond t o  

their original names produce chromatic intervals. 

The group of diatonic cor1sonances includes perfect 

unisons, perfect octaves, perfect fifths, perfect 

fourths, major thirds, minor thirds, major sixths, 

minor sixths. The group of diatonic dissonances 

includes major and minor seconds, major and minor • 

sevenths, major and minor ninths. All the chromatic 

intervals are classified into augmented and diminished . 

The Augmented Intervals: 

Unison, 2nd 3rd, 4th, 5th, 6th. 

The Diminished Intervals: 

�I ��l'lft�t.c � 
(i) l>lAioiJ� 

Octave, 7th, 6th, 5th, 4th, 3rd. 

;Figure V. 
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The augmented • unison • 
l.S equivalent to minor 2nd by sonority. 

" n 2nd n n n major 3rd n n 

n " 3rd " n n perfect 4th n " 

n " 4th n n n no diatonic interval. 

n n 5th n " n minor 6th by sonority. 

n " 6th n n " minor 7th n " 

The diminished octave " n n major 7th " n 

" " 7th n n n major 6th " " 

" 6th n n n ferfect 5th" n 

n " 5th n n n no diat-0nic interval. 

" n 4th n " " • maJor 3rd by sonority. 

n n 3rd n " n major 2nd n n 

Thus, the following intervals are 

consonanc-es by sonority. The augmented 2nd, 3rd, 5th; 

the diminished 7th, 6th, 4th. All other chromatic 

intervals will be treated as dissonances with the 

resolutions corresponding either to diatonic or to 

chromatic dissonances. 
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Lesson CXLIX. 

B. Resoluti on of Harmonic Intervals 

The necessity of varying tension implies 

the procedl.ll'e known as resoluti on of intervals. It 

is important to realize that the variation of tension 

may be gradual as well as sudden, i . e. the transition 

from a more dissonant harmonic interval to a less 

dissonant one and finally into a fully consonant one 

is  as desirable as a di rect transit ion from e.xtreme 

tension to full consonance. 

In the followi ng tables intervals such 

as perfect 4th and 5th are included as well, not 

for the purpose of relievi ng them from tensi on, but 

for the pur�ose of devising different useful manipula

tions forming contrapuntal sequences. The quantity of 

resolutions known to a composer has a definite effect 

upon the harmonic versatility of his counterpoint. 

For e:xaniple, if one knows only four re.solutia>ns • of a 

major 2nd (which is the �sual case) as compared to 

the twelve possible resolutions, the amount of 

musical possibilities is considerably less. Thinking 

in terms of vari ati ons one can see that the number 

of permutati ons available from four or from twelve 

elements is so diffebent i n  quantity that they cannot 
twenty-

even be compared (the first giving/four variations 
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and the seco nd givi ng 479, 001, 600 variations) .  It 

is easy to see that having such losses on the. 

quantity of resolutions of each harmonic interval, 

the loss on the total of v.ersatili ty of counterpoint 

is incalculable.. There is no need in  memorizing all 

the details of the resoluti on of intervals, as there 

are general underlying pri nciples evolved throug h 

the tradi tion of centuries• 

1. All diatonic intervals resolve 

through either outward or i nward or o�lique motion 

of each voice on a semi tone or a wh ole tone. * 

2. When a resoluti on is ob tained 

through oblique moti on the sustained voice may 

produce a leap on a melodic i nterval of a perfect 

4th, either up or down. 

3. All intervals known as 2nds have a 

tendency to expand. All i ntervals kn1.,,wn as 7ths 

have a tendency to contract. All 7ths are the 

exact equivalents of 2nds i n the octave i nversion 

(i.e. all pitch-uni ts are identi cal with those of 

the 2nds) .  All the 9ths have a tendency to contract .. 

All the 4ths and 5ths are neutral, i .e. they either 

expand or contract. · 

Thus ., the enti re range of permutations of 

semitones and whole tones, wi th their respective 

* An 1 = 3 is also correct when such an i nterval 
- represents two adjacent musical nan1es (c - dff, 

for example) . 
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directions, constitutes the entire manifold of 

resolutions .. 

29 .. 

Refer to Resolution of Diatonic Intervals 

chart be.low. 

Resolution of Diatonic Intervals 

• 

Seconds 

Ninths 

Sevenths 

--- - -
.., 

Fourths -
and Fifths - --

(enharmonic) 

The following is a complete table of 

resolutions of diatonic intervals .. The i11tervals in 

parentheses are the secondary resolutions. They are 

used in all cases when the first resolution produces 

a dissonance. 
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All chromatic i ntervals which are 

augmented have a tendency of expansion • .And all 

chromatic intervals which are diminished have a 

tendency of contraction. The method of reasoni ng 

augmented or diminished intervals is 
d-f 

32 • 

in resolving 

as follows: is a 2nd derived throug h  augmentation 
C 

of a major second, either through alteri ng of d to'd� 

or of c� to c�. Thus, ori gi nally it might have been 
d d� 

a 2nd or ,J.,� Considering the dual origin of such 
C c¥" ·, 

interval we fi nd the respective resolu�ions: if d:4P 

is the alteration of d, it has the inertia of moving 

further in the same directi•..,n, i.e .. to e; or if c t, 

is the alterati on of c� it has the inertia of 

moving to b�. Such two steps taken individually or 

simultaneously constitute the fundamental resolutions. 

An analogoos procedure must be·applied to the 

diminished intervals where the diminutions are 

produced through inward alteration. 

The following is a complete table of 

resolutions of chromatic intervals. When a chromatic 

interval resolves into a consonance by sonority, the 

sig n  "enh. " is placed above it (enharmonic). When 

the interval of resolution is surrounded by paren

thesis, the interval of resolution is a dissonance . 

Figure VII, 

(please see next page) 
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In the old counterpoint we often find a 

different type of resolutions from the ones described 

above. They were known as kambiata resolutions, 

which are conceived as a melo<:lic step of 'a 3rd instead 

of a 2nd. No good reason bas ever been given why such 

resolutions would be used. I offer an hypothesis for 

the explanation . of these resolutions which I believe is 

the only one to be correct • 

As the tradition of old counterpoint 

was developed, while the pentatonic (5 units) scales 
' . 

were in use, some of the pitch-units o'r full diatonic 

(heptatonic = 7 units) scales were absent. Thus, if 
d 

we find that in an interval , d moves to e, while 
C 

c moves to a (instead of b) , a kambiata takes place 

merely because such scale may be a pentatonic scale 

and the unit b does not exist. 

This approach offers us a definite 

principle of resolution of int ervals in the scales 

which have not been in use in the classical 

traditional music confining all the resolutions 

• 

merely to the next step with the f'o.llow�g musical 

name ,,, For example, in harmonic a minor, the interval 

a 
1f may be resolved through moveme·nt of th� lower 
g 

voice only to f,, as no other pitch-unit with the name 

f exists in such scale,,, 

· This concludes the Theory of Harmonic 

Intervals ,,, 
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J O S E P H S C H I L L I N G E R 

C O R R E S P O N D E N C E C O U R S E 

With: Dr .  Jerome Gross Subject : Music 

Lesson CL. 

Theory of Correlated Melodies . 

(Count er point) 

As counterpoint represents a system of 

correlation of melodies in simultaneity and continuity, 

it is absolutely essential to be thoroughly familiar 
.. 

with the constitution of melody. Only by being 

familiar with the material of the Theory of Mel ody is 

the successful accomplishment of such task possible. 

Correlation of melodi es is usually considered to be 

one of the most difficult procedures. As the structural 

constitution of one melody is unknown theoretically, the 

combination of two unknown Quantities is an entirely fan

tastic task to undertake. 

It is not only a problem of putting two 

voices together, but a problem of either combining two 

melodies already made, or a composition of two melodies 

with distinct individual characteristics . As each 

melody consists of several components, such as the 

rhythm of duratior1s, attacks, melodic forms, the forms 

of tra jectorial mo tion, etc., the correlation of two 

melodies in addition to the above described components 

• 
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adds one more : harmonic correlation. Thus, counterpoint 

can briefly be defined as a system of correlation of 

rhythmic, melodic and harmonic forms in two or more 

conjugated melodies. 

As the' forms concerning one individual melody 

are known thro ugh the previous material , we will first 

cover the field of harmonic correlation which is based . 

on tJ:1e Theory of Harmonic Intervals . After covering this 

particular branch we shall return to the other forms of 

correlation for the purpose of achieving t�e final 

results offered by the contrapuntal technique. 

A. Two-Part Counterpoint 

The fundamental technique in writing two-part 

counterpoint is based on writing one new melody to a 

given melody. A given melody is usually abstracted 

from its rhythm of durations, thus producing a purely 

melodic form which may be taken from a choral as well as 

from a popular song. The usual way of presenting such 

an abstracted melodic form is in whole notes. Such a 

melodic form is usually known as Cantus Firmus (firm 

cl1ar¢: = canonic or established chant) . Our abbrevia

tions for Cantus Firmus will be C .F. and for the .melody 

written to it, counterpoint or C. P. The first forms of 

counterpoint will be classified through the quantity of 

attacks in C.P. as against one attack in C.F. Thus, 
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all the fundamental forms of counterpoint will be as 

follows: 

CP -
er- - 1, 2, 3 . . . . . . n 

CP 
CF - a 

This form of counterpoint, through inter

national agreement for a number of centuries, implies · 

the usage of co nsonances only. As we shall have four 

fundamental forms of harmonic correlation and some 

of these forms will be polytonal (i.e., there will be 

two different keys used simultaneously), we will have 

to use consonances by name and by sonority. The 

positive requirements for harmonic correlation in 

2-part C.P. are: 

a. The variety of types of intervals (i.e., 

intervals expressed by different numbers). 

b. The variety of density. 

c. Well defined cadences expressed through the 

leading tones moving into their axes. 

d. Crossing of C.P. and C.F. is permissible 

when necessary. 

The negative requirements are: 

a. The elimination of consecutive intervals whioh 

are perfect unisons, octaves, 4ths and 5ths. 
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No consecutive dissonances. Thus, the only 

intervals to be used in parallel motion are 

thirds and sixths. 

b. Motion toward such intervals only through 

contrary (outward or inward) directions. 

c. No repetiti on of the same pitch-unit in CP 

unless it is  in  a di fferent octave. 

The forms of harm onic relations previously 

used in time continuity (see Theory of Pitch Scales) 

will be used in counterpoint as the forms- of 

simultaneous harmonic correlation. 

Forms of Harmonic Correlation 

1. u. - u. Unitonal - Unimodal (identical scale 

structure and key si gnat ure). 

2. u. - P. Unitonal - PolyJjlodal (a family scale 

wit h identical key signature). 

3. P. - u. Polytonal - Unimodal {identical scale 

structure, dif ferent key signature) . 

4. P. - P. Polytonal - Polymodal (di fferent scale 

structure, different key signature). 

::(n  the XIV Century, .  in the ca.se of 

Guillaume de .Machault* we find a fully developed type 

2, and in some cases an undeveloped type 3. Only the 

* The phonograph records of a Mass written by this 
composer for the coronation of Charles V are 
available. (Les Paraphonistes de St. Jean des Matines 
and Brass Ensemb le conducted by Van) .  The reconstruction 
of Machault ' s  2 and 3-Part Madrigals in our musical 
notation is publi shed by the Hi·storic Musicological 
Society of Leipzig in 1926. Not aYailable in U.S.A • 
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ignorance and vanity of the contemporary composers 

make them believe that they are the discoverers of 

polytonal counterpoint. The greatest joke is on 

the modern French composers who make the claim of 

priority, not being aware that their direct musical 

ancestors were the originators of this style centuries 

ago. It is also unfortunate that the idea of poly

tonality goes hand in hand with the so-called 

"dissonant counterpoint", i.e., the counterpoint of 

continuous tension without release. Music based on 

polytonality with resolutions is a very fruitful, 

highly promising and almost undiscovered field . 

The usual length of C. F.  is about 5, 7, 9 

or more bars, preferably in odd numbers (this require

ment is traditional) .  The selection of different key 

signatures for the types 3 and 4 is entirely optional. 

Any two scales, the root tones of which produce a 

consonance, may be used for this type of counterpoint. 

The best way of cor1struc ting exercises is the placement 

of C.F. on a central staff surrounded by two staves 

below, and two staves above, assigning each staff for 

a different type of counterpoint. 

In the following group o� exercises each 

part must, be played individually with C.F. Thus, each 

example produ.ces four types of counterpoint with a 

I 

• 

• 
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historical emphasis of eight centuries, as the first 

and second types were consid erably developed during 

the middle ages, and the third and the fourth types 

are mostly used in the music of today • 

6 • 

It is important to realize that all forms 

of traditional contrapuntal writing were based on the 

conception of each melody being in a different mode, 

and we  can even trace the polytonal forms (though in 

their embryonic form) as far back as the XIII Century . 

• 

• 

• 
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As a temporary devic e for harmonic 

accompaniment , double pedal point may be used in 
. 
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. . ., 
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-

additi on to 2-part cou nterpoint . The root tones of 

both contrapuntal parts become the axes which must 

be assig ned as chordal functions of a double pedal 

point. For exam ple, counterpoint type l (giving t he 

same pitch-units for poth voi ces) may be consi dered 

as a root tone or a 3rd or a 5th, etc., of a simple 

c hord structure. Then, havi ng c as a axis for bot h 

contrapu ntal parts, the pedal point will become 

-
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g or e, c, etc. This device is applicable to all four 
C a f 

types of counterpoint. For example, in type 2, if one 

contrapuntal part is ionian c and the other aeolian a, 

they may represent a root and a 3rd, or a 3rd and a 

5th, etc., respectively. The pedal point in such case 

will be e 
or 

C 
etc. In the types 3 and 4 with such f' a 

), 
and a P, C two axes e or as c we may use f' etc. as al, 

pedal points. Each double pedal point must last 

through the entire co1:1trapuntal continu:i:ty. 

More £lexible forms of harmo�1zation of 

the 2-part counterpoint will be offered later. 

CP 
CF 2 a 

In devising two attacks of a counterpoint 

against one attack of the C.F .,  the following combina

tions of barillonic intervals are possible: 

(c - consonance; d - dissonance) 

C - C 

c - d 

d - C 

d - d* 

In the old counterpoint all the se cases were used in 

both strict and free style, with the exception of a 

*In scalewise contrary motion only. 

a. 
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dissonance being on the first beat. 

Thus, each bar may start with either a 

consonance or a dissonance. And, in the case of 

�� == 2, all dissonances require immediate resolutions. 

Here are a few examples of such contrapuntal exercises . 
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Lesson CLII. 

CP 
CF = 3 a 

Three attacks of CP against one attack 

of CF offer the following combinations of harmonic 

intervals: 

C - C - C 

C - d -· C 

d - C - C 

C - C - d � resolution 

d - C - d 
� 

resolution 

d - d*- C 

c - d - d* 

The d - c - c combination offers a new 

device which becomes possible with three and more 

attacks .; \Ale shall call it a del.ayed (or indirect) 

resolution. Instead of resolving a tense interval we 

move it to another cot1sonance, after which we resolve 

the dissonance. 

This device accomplishes two things: 

(1) it produces a psychologica l suspense, thus 

making music more intriguing; 

* In scalewise contrary motion only 

12 .. 
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(2) it produces ipso facto a more expressive 

melodic form . 
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Examples of Delayed Resolut�ons 

Figu,re III,. 
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CP 
Examples of CF = 3 a 

Figure IV . 
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CP 
CF = 4 a 

, 14 .. 

Four attacks of C.P. against one attac-k of 

C.F .  offer the following combinations of harmonic 

intervals: 

C - C - C - C 

c - c - c - d � resolution 

C - C - d - C 

C - d - C - C 

· d - c - c - c  

C - C - d - d* 

C - d - d*- C 

d - d** - C 

d - C - C - d 

C - d - C - - d 

d - C - d - C 

+ resolution 

-t resolution 

There are wider 

of delayed resolution for 

possibilities in the field 
CP 
CF = 4 • 

Parallel axes, centrifugal and centripetal 

forms become more prominent. 

*In scalewise co11trary motion only. 

�Either as * or two independent dmssonances, both of 

which are resolved by the following c - c in any 

order. 
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It is also useful to know all the 

advantageous starting points for the scalewise 

passages ending with a consonance. 

Examples of Passages Ending with a 

Consonance. 

Figure VI. 
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CF = 4 a 
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Lesson CLIII. 

CP 
CF 

17. 

• 

5 a 

It is no longer necessary to tabulate all 

the possible combinations of c and d. 

Best melodic qual ity of CP results from 

an extensive use of delayed resolutions . The latter , 

being combined with the variety of intervals and v-,ith 

the scalewise passages produce most versatile forms 

of melody. 

The devices for delayed resolution, 

impossible for less attacks than five, are as follows :  

d ,  d c d ,  c ,  i.e.: the first dissonance is 
..!,_;,i " � 

followed by the second dissonance with its resolution, 

then by the repetition of the first dissonance with 

its resolution; 

d ,  d c d2 c ,  i .e.: the first dissonance is ..., 2
71 � 

followed by the second dissonance without resolution, 

followed by the resolution of the first dissonance, 

then by the repetition of the second dissonance 

followed by its resolution. 

Examples of Delayed Resolutions. 

Figure VIII. 

(please see next page) 

• 



0 

0 



j 8 , ] r I 

r 
7 
• 

• 

- / 
] ] 

I ·� • 

' 
• 

• 

A I ' 
• 

L�
�: -

• 
• 

• ► • • • -. .. 
rt 

' 
• • 

• .. . . � 

� • 

• • • 

�; 

e.J� • 
� I,! I,. , • --- I -

F*'· ••. o.1, 
� 

] 

----;. ;. 
• 

18. 

::. 
] ::. - -. • 

] ·� . -
• • • 

� j ] • ' 
• -J - , . - . -· ,-� 

-
\,. -

'1 ,,,-- I " s i. 
-

:l -
� 

j ] ] 0 I l - r • -. IL _-

ft � 

\. - -

S,calewis e Passages Ending with a Consonance 

figure IX. 

3·. 

• • 

. L • � . 

� 

. 

_, -� ' 

� I 

] • ., :i: ,,- -

Exam ples of 

J 

CP 
CF 

-
] 

5 a 

Figur e X. 

♦ -#- • �- ► I ' 
' 1 
. -�- ► - • - ' !. ( -

• 

- [ 1 -e 

. ,  • • 
� 

·
·
� 

' I ' I I I 
111 ·- 9' • • I , - • 

� 

' •· '-If I' I • I I l. I � 

-fi;�..J 
- • 

J -
. .. j - I - • , -

. - < I 

..... .L • I .,..� • .. . 

I '► • • ' 
� C ... .... I 

• 11) 
,� 

·� 
� 

• 
( ( i, • -� ... I . 

I 

t • 
• I I 

� 

-·-� I . -
11 

. 

] 

-

' 

:i: 

, � 

c� 

. 

I I • 

aJ 



0 

0 



• 

• 

• • 

• 

• 

CF 
CP 

19 . 

6 a  

The new devices for delayed resolutions 

possible with six attacks: 

d , d 2 d , c d2 c ,  i. e . :  the first dissonance, the 
..... � ...__::,, 

second dissonance, the repetition of the first 
. . 

dissonanc-e with its resolution, the repetition of the . 

second dissonance with its resolution; 

d
1 

d o 
� 

d c c ,  i.e. : the first dissonance, the 
� 

second dissonance, the resolution of the 'first 

dissonance, the repetition of the second dissonance, 

the delay, the resolution of the second dissonance; 

d ,  d2 c d , c c ,  i.e. : the first dissonance, the 
'--==" ..... :,, 

second dissonance with its resolution, the repetition 

of the first dissonance, a delay, resolution of the 

first dis sonance; 

d 1 c c d c c ,  i.e.  a combination of two groups 
....,_ _,, � � 

by three, each consisting of a dissonance, a delay and 

a resolution. 

Other combinations can be devised in a 

similar way. For example: d 1 c d
2 

c d
2 

c ,  which is 
.., "' ' ;,, 

a combination of 2 + 4.  

While using six attacks against CF, it is 

easy to devise a great variety of melodic forms and 

interference pattern (see: Melodi:za.tion of Harmony) . 
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Exam ples of De layed Resolutions. 
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Examples of Scalewise Passages Ending wit h 

a Consonance. 

Figure XII . 

· Examples of 
CP 
CF = 6 a 

Figur e XIII. 

(please see next page) 
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CP - 7 a C, -

22. 

Seven attacks of CP against one of CF offer 

new forms of delayed resolutions. The number of new 

combinations grows, and it becomes quite easy to 

develop various melodic forms, built on parallel, 

converging and diverging axes. 

Examples of Delayed Resolutions. 

Figure XIV, 

' 
• • • .....J ::i j j 

j j 
--: =L::. ,,___ ·- ·-

Examples of Scalewise Passage,s Ending 
a I 

with a Consonance. 

Figure XV. • 
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- CP 
Examples of CF = 7 a 

I • 

Figure XVI . 

CP = 8 a 
CF 

Eight attac k s  of CP against one of CF offer 

a great variety of melodic forms. The latter can be 

obtained through the technique of delayed resolutions. 

It is equally fruitful to devise melodic forms by 

means  of attac k-groups. For example, thinking of 8 as 
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24. 

i series represented through its binomials a.nd 

trino�ials. Interference groups can be carried out 

in counterpoint in the same way �s in the Melodization 

of Harmony, where such groups were used against the 

attacks of H. 

Examples of Delayed Resolutions. 

Figure XVII . 
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All scalewise passages ending with a 

consonance must start and end with the same pitch 

unit, as such is the property of our seven-name 

musical system. 

Examples of Scalewise Passages 

Ending with a Consonance, 

Figyre XVIII. 
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Examples of g� = 8 a 

Fig ure XIX. 
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CP 
= 8 a gives sufficient technical CF 

" 

,, 

equipment for any greater quantity of 

desirable to devise such cases as CP 
CF 

attacl<:s. It is 

- 12 a and 

CP 
CF = 16 a, as they provide very usable material for 

the animated forms of passage-like obligato. Under 

usual · (traditional) treatment, such groups with many 

attacks of CP agains t CF remain uniform or nearly 
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uniform in durations. 

The most important conditions for 

obtaining an expressive counterpoint: 

(1) abundance of dissonances; 

(2) delayed resolutions; 

(3) interference attack- g roups • 

• 
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J O S E P H  S C H I L L I N G E R 

C O R R E S P O N D E N C E C O U R S E 

With: Dr, Jerome Gross • Subject: Music • 

Lesson CLIV. 

Composition of the Attack-Groups in 

Two-Part Counterpoint. 

In all the previous forms of counterpoint the 

attack-group of CP against each attack of CY was 
GP constant: CF = A const. 

The monomial attack group cons�sted of any 

desirable number of attacks: A =  a, 2a, 3a, ... ma . 

• Now we arrive at binomial attack-groups for 

CP. This can be expressed as 

counterpoint written to two successive attacks of the 

ca11tus firmus consists of two . differ.ent attack-groups. 

For instance : 

(1) 
CP, 

+ CF, 
CP2 _ 2a a - + - • CF2 - a a ' (2) + CP2 _ 3a + 2a . 

CF 2 - a a ' 

(3) (4) 
- a - - 8a 

a ' • • • 

The selection of number values for the attacks 

of CP against the attacks of CF depends on the amount of 

contrast desired in the two successive attack-groups of 

CP. 

All further details pertaining tothis matter 
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2. 

are in the respective chapter of the Theory of 

Melodi zation . • 

Binomial attack-groups are subject to permu-

t.ations. 

For example : CP, + C.P2- = 4a + 2a 
CF , CF2 a a " This 

binomial attack group can be varied further through the 

permutations of the higher order. Suppose CF has 8a . 

Then the whole contrapuntal continuity will acquire the 

following distribution of the attack-groups: 

CP, + CP, 
CF, CFa 

CP 1-t 
CF , -r 

-

+ _CP, + 
CF,-

4a + 2a + 2a + 4a + 
a a a a 

2a+ 
a 

4a + 4a + 
a a 

2a 
a • 

Polynomial attack-groups of CP against CF can 

be devi.sed in a similar fashion. 

The resultants of interference , their variations, 

involution groups and series of variable velocities can be 

used as material for this purpose., 

(1) 

(2) 

(3) 

(4) 

Examples of polynomial attack-groups of 

OP 4 -b _ 3a + � + 2a + 2a + � + 3a • 
CF , -t, - a a, a a a a ' 

CP . CF . 

CP ,-8 = 2a + � + ,! + � + 2a + � + ,! + ,! + 2a • 
CF ,_,. a a a a a a a a a ' 

CP &-> 
CF ,-5' 

= .! + 2a + 3a + 5a + 8a . 
a a a a a ' 

= 9a + 6a 
a a 

+ 6a + 
a 

4a 
a • 

Simplest duration-equivalents of attacks 

will be used in the following examples·. 

• 

• 

• 
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At this stage it shou ld not be difficult to 
. 

develop the technique of writing one att ack of CP t o  a 

g rou p of attacks of CF. In an exercise CF must be so 

constructed as to permit the matching of one attack 

against a g iven attack-group. In  a given melody, when 

compos:l.ng a counterpa.rt, it is necessary to compose the 
. 

attack�g roups first • This shou ld be accom plished with 

a view upon the possibilities of the t reatment of 

harm onic int ervals. Whenever the assumed g rou p does 

not permit t o  carry out the resolution requirements • ' 
(such as expanding of the second, contracting of the 

seventh or the ninth, etc. ), the attack-group itself 

must be reconstructed • 

As it was mentioned before, it is qu ite 

pract ical to re-wri.te the given melody into uniform 

durations first, and then to assig� the advantageous 

attack-g rou ps. After the cou nterpoint is written., the 

original scheme of durations ean be reeonstruc�ed. 

Vfith the pr.esent equipment, only such 

melodies can be used as cantus firmu s which are built 

4. 

on one scale at a time, and the scale itself must belong 

to the Fir st Group (see Theory of Pitch Scales) . 

The procedure it self of distributing the 

att ack- groups of a given melody is a nalogous t o  that 

used in the branch of Harmo.nization of Melody, where 
• 



0 

0 



• 

• • 

attacks of a given melody were distributed in 

relation to the quantity of chords accompanying 
.. 
them. 

The follov,ing is a melody subjected to 

different attack treatments for the purpose of 

writing a counterpart to it. 

Figure XXI, 

(please see next page) 
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Lesson CLV. 

In writing a counterpart to a given melody 

(but without any considerations of the given harmonic 

accompaniment) it is important to consider : 

(1) the composition of attacks, and 

(2) the composition of duratioas. 

Composition of attacks depends upon the 
' 

degree of animation of the given melody. If a lively 

melody is to be compensated, the countermelody should 
' 

7. 

be devised on the basis of reciprocation of attacks and, ' 
finally, durations. All the techniques pertaining to 

variations of two elements serve as material for the 

two part compensation (counterbalancing) • 

If a lively melody is to be contra.sted, the 

countermelody should be devised by summing up groups 

of attacks together with their durations. The sums of 

durations of the given melody, with the specified number 

of attacks ag.ainst eaeh attack of the countermelody, 

define the durations of the counterpart. 

If a slow melody is to be compensated 

(counterbalanced) by a slow counterpart, the technique 

.of reciprocation of attacks and durations should take 

place. Variations of two elements provide such a 

technique. 

If a slow melody is to be contrasted, the 

countermelody should be devised fir st by defining the 

• 
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number of attacks in the countermelody against each 

individual attack of the given melody, after which 

the sum of the attacks of the counterpart will 

represent the duration, equivalent to the duration of 

one attack of the given melody. 

Melodies where animated portions alternate 

with the slow ones, or with cadences, are particularly 

suited for the compensation method. In such a case 

when one melody stops, the other moves and vice versa. 

We shaJ 1 analyze now th.e prob·lem of writing 

the counterpart to a given melody. 

Let us take Ben Jonson rs "Drink to Me Only 

With Thine Eyes". 

The melody reads as follows: 

" � -, , ' ' ' • -c • I - , 
� .. • • .... . � ... 

Reconstruction of this melody into a CF 

gives it the following appearance : 

) I 
• 

� 

• 
• j 

' .... ' .. ... 

This is a fairly animated type of melody. 

8. 
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Let us devise the scheme of durations for CP. One 

of the •simplest solutions for a contrasting CP wo� ld 

be to make each attack of CP correspond to T. Thus 

we would obtain CP = 4a and a = 6t. For a less 

moderate contrast we could assign CP = Sa and a =  3t. 

To obtain CP of the counterbalancing ty pe wou ld require 

the assignment of two contrasting elenents, if such 

can be found in CF. As T, = 2a and T2 = 6a, and as T3 = 

= 5a and T� = a, this CF provides suffic ient material 

for assig ning two elements and for compensating them in 

CP. There is of course no way to counterbalance the 

original v·ersion of this melody. 

Thus, we have obtained the following three 

solutions, each different but equally acceptable. 

Figure XXII, 

(please see next page) 
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12. 

Lesson CLVI. 

Direct Composition of Durations in 
0 

Two-Part Counterpoint, 

In composing an original two-part counter

point it is often desirable to compose the two counter

parts rhythmically first. The entire technique 

; concerning binomials and their variations (see Theory ' 

of Rhythm) is applicable in this case. 

Counterbalancing (compensation) is achieved 

tbro-ugh the permutation of binomia1.s·, and ',this may 

follow through the higher orders ., 

For example: 

3 J .  J ,I J i J J d .  j J J J .  J .  J J J 
, , , q .  q . i 1 1 4 ,  1 1 l i 1 l � -

• 

Which part is written first (thus becoming 

CF) is not essential in such a case. It is essential, 

however, to write one part completely, and not section 

by section. GP must be written after CF is completed. 

For more diversified rhythmic continuity, 

• 

• 
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• 

resultant s with an even number of terms can be us ed. 

T he binomials cons tantly reci procate in  such a case. 

For exam ple: T = r8+7(+ 8t) .  

J .  ,,r] J I J I' J .  J J J .  PJ J J .  ,,rJ J . 8 - - -- ,-.. -
uq · , � . , • V'� q � 'I ,., , . l) • , 'I · u 

In all such cases (c ont inuous· reciprocat ion 

of the variable binomials ) ,  the number of attacks of 

CP against - CF remains constant , while the durations 

vary . 

Still more homogeneous effects of rhythm 

in both counterparts may be achieved through t he use 

of variations of rests or s plit-unit groups. The 

groups thems elv es do not have to be binomials; the 

two best of any polynomial groups take place . 

For exam ple: (a) rests 

4 .L. 1 J J  l � J J  J J � J  J J J .i.  

or: (b) tied rests 

1 1 , ,  '1 , ,  
t '-1 1 

• 

0 

0 
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...._,, 

• • 

4 
4 

(c) sp lit-unit g roups 

n J J 1  l !1 J l 
, 1 1 u  , , u , 

J J n J 
1 u, i 

J L l n 
u, 1 1  

14. 

Any rhythmic group set against its conv erse 

provides satisfact ory c ounterparts • 

For _examp le: (r5+4
) . 

2 2 ' T = 4t. 

4 - J J . J J - d J .1 ,J 
4 

1 1 4  4 '9 - , 0 

Any of  the series of variable velocities 

can be used for such a purp ose. 

For examp le: summation Series I :  

i J J cl ol J .  I 0 �' I 0 ,-.. 4 • • -
4 ::; , 4 .. 0 , 4 'j 9 

C 

1 1  l 

Adjacent contrasts for two mut uall.y . 

compensating parts can be achieved by any sy nchronized 

involution-groups p lac ed in sequence. The two power s  

supv lY the a and b elements, and thus are treat ed 

thl.· ough the permutations o.f two eleme nt s (any order) • 

• 

I 
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• 

For example: (2+1) 2 + 3 (2+1) . 

a :::: (2+1) 2 • b - 3 (2+1) , -

9 J . J) J  J p d . J J . J J . s, ., J r  - ·'- ·-8 I""'. ---
q - , i ·  v 1  1 -V 1 • v ,  , 'v q 

For example : 4 (2+1+1) + (2+1+1) 2 
• 

a ::::  4 (2+1+1) • b :::: (2+1+1) 2 • , 

4 � J J J J J J n J .rJ -
, , , u , u  0 9 4 

All the above described d.evices permit 

to start with the composition of either part as CF, 

1 

• 

and they all refer to counterbalancing (compensation). 

The technique of simultaneous harmonic 

contrasts between CF and CP is based on the 

distributive involution for the two synchronized parts 

used simultaneously . Any number of terms can be used 

as a group. The limitation of two parts corresponds 

to the two power-groups (adjacent or non-adjacent 
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povrers). In all such cases the number of attacks 

of CP against CF is constant, and such a number 

equals the quantity of terms in the polynomial. 

16. 

Thus a binomial squared gives CP 
CF = 2a, 

a trinomial squared gives gt = 3a, etc. 

Still greater cont�asts can be acl1ieved 

either by using larger polynomials, or by synchronizing 

non-adjacent powers... In tl1e latter case a binomial 

cubed 

gives 

and used against its synchronized first pov1er 
CP _ 
CF 4a, i.e . ,  22 ; a trinomial� cubed and 

used against its synchronized first power gives· g: = 

= 9a, i.e. , 33 , etc. 

Nothing prevents the composer from using 

adjacent higher powers, like cubes against squares, 
• 

fourth power groups against eubes, etc. 

In all these cases the lower power 

employed represents CF, as it is easier to match 

several attacks against a given one attack, than vice 

versa. 

Examples : 

(a) CF = 3 (2+1) ; CP = (2+1) 2 • 

9 
8 

d .  J . J - J .  
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(b) CF = 9(2+1) ; CP = (2+1) 3
• 

J .  l J .  I J _ ,I . , . . -
'--- '-- ..__...... 

r' ,,..-... ,,,---. 
. � - , V' , , . v 1  , · v 1 1 11  

(c) CF = 8(2+1+2+1+2) ; CP = (2+1+2+1+2) 2 
• 

8 � C 0 C 

8
q 1 i 1 1 4  

( d) CF = 16(2�1+1) ; CP = (2+1+1) 3 
• 

4 J J J 
4 

J ,rJ J fl J n rn m 1 n rn m 

0 C C 0 
• 

In addition to involuti on-groups, 

coeff icient s of dur ation can be used, like g; = 
I 

_ 2(r4+3) = (3+1+2+2+1+3) + (3+1+2+2+1+3) , as well - r8+6 6 + 2 + 4 + 4 + 2 + 6 

as the resµl tants of instrumental interference composed 

• for two parts. 
Figure XXIII, 

Exampa.es of Two-Part Counterpoint wit h  Pre
Compos ed Duration-Groups. 
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Fig . XXIII.  
In all the following examples the int0nation of CF was 
composed fir st . • 
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20. 

Lesson CLVII, 

Chromatization of the Diatonic Counterpoint 

It seems to be easy to write a chroma tic 

counterpart to any diatonic melody, as any suitable 

pitch-units can be chosen from the entire chromatic 

scale. Such countermelodies, however, contain one 

general defect: the neutral character which comes with 

a uniform soale. To an average listener it sounds as 

if any pitch-unit would be equally as acceptable in 

place of the ones already set. This peculiarity of 

musical perce1,Jtion is due to the inl1eri ted and 

cultivated diatonic orientation. 

An average listener hears chromatic units 

as an ornamental supplement to a diatonic scale. Such 

chromat.ic uni ts are commonly used as auxiliary tones 

moving into the diatonic units of a given scale, thus 

forming directional unit$. Diatonic uni ts are 

perceived as independent pitches (though in a certain 

grouping in sequence) . Chromatic units are perceived 

as dependent pitches leading il1to diatonic pitches. 

Music constructed entirely chromatically, i.e., without 

diatonic dependence usually belongs to a different 

cat�gory than the dia·tonic music with directional 

units .. It is known under the name of 11atonal'', or the 

• "twelve-tone" music. 

. ' 
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21. 

For this reason, we shall use chromatic 

counterpoint with diatonic dependence only. Such a 

counterpoint can be devised at its best by means of 

inserting the passing or the auxiliary chromatic units 
I 

post factum. 

This technique is applicable to all four 

types of harmonic relations . It is important that the 

conversion of a diatonic counterpoint into chromatic 

does not affect the est-ablished forms of resolutions. 

The remodeling of durations can be 

accomplished by means of split-unit groups. This 

device allo-vi,s to preserve the character of rhythm 

which was originally set • 

Figure XXIV, 

Examples of Chromatic Variations of 

the Diatonic Coun�erpoint. 

(please see next page) 

• 
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(Fig . XXIV) 
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J O S E P H  S C H I L L I N G E R 

C O R R E S P O N D E N C E 

With; pr. Jerome Gross 

Lesson CLVIII. 

C O U R S E 

Subject: Music • 

Composition of Contrapuntal C ontinuity. 

Extension of any given contrapuntal continuity 

is based on geometrical .mutations . 

The fundamental technique of geometrical 

muta.tions for the two-part counterpoint is the inter

change of music assigned to CF and CP. Assuming that 

CF represents the actual part and CP -- the actual 

counterpart , we obtain the two variants for each voice: 

CP CF 
CF + CP , where both CF and both CP are identical, but 

appear in a different octave . 

In the old systems of counterpoint it was 

known as "vertical convertibility in octave".  We shall 

look upon it merely as two variants of exposition for any 

co�nterpoint and consider such a convertibility to be an 

inherent property of counterpoint as such. 

By applying the principle of variation of 

two elements ad infinitum, i.e . ,  through permutations of 

the higher orders, we can compose an entire piece of 

music from one contrapuntal exposition. 

Figure XXV .  

Example of Contrapuntal Cont inuity of the Thir§ 

Order Produced Through the Permutation of Parts 

2_f t!le Original EtcPosi tion • 

• 
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As any musical exposition, when conceived 

geometrically, becomes subj ect to gua�.ra11t rotation (see: • ' 
Geometrical Projections of Music) ,  we obtain the four 

variations of t:t1e georlletrical positi ons: (i) , @ ,  © ,  @ . 

Through t:t1e vertical permutation of parts 

two-part exposition yields two variants. As each variant 

has four rotatior1al posi ti o11s, the total number of variants 

for 011e two-part contr_apuntal exposition is ei ght :  

CF @ GP a ' 
GP @ CF a ' 

CF @ 
CP b ' 

CF In"'\ 
CP � ' 

CP � 
CF � ' 

CF/,;"\ 
CP � '  

Wl:1en making a transition from one form into 

another in the same part, place the respective pitch-unit 

in its nearest pitch position. This is true of both : the 

octave and the geometrical inversion. The axis of inversion 

for © and @) is the axis of CF ( or the part assumed to 

bear its meaning) . 

Figure µvr. 

Examples of the Variants of One Exposition . 

• 

• 

• 

' 



0 

0 



4. 

• 

TYPE. :r. . 

-
L� •• • I p_ 

Fl 
I • • �. -:-0. b . I - .. 

• . .. 

� ei> © 
,.., .. � �-I j ] , • ■ • j j -. • 

' 
; ' 

• 
• ,. • • • · .. • 

• • • .. 

• a 
--

]� 
, . • • 

• r I ' 

I I T 
�. 

' 
• • 

' . 

g;@ . 
-1-

,� -· j ■ -Di. • • j • I ] -· I • • 

■ -.. .. 
• 

• • • • 

--

C 

./. 



0 

0 



(Fig . XXVI , cont . )  
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The eight variants of contrapuntal exposition 

can be selected in any desir able combination .  p;ny 

combination of the selected variants produces a complete 

form of coatinuity, i.e. , a whole composition. 

• 

The sele ction of various geometrical inversions 

must be guided by a definite tendency with reg.ard to the 

amount and distribution of corlt rasts.. All the considera

tions pertaining to this matter were discussed in the 

Geometrical Pro jections of Music. 

The most importa11t principle to remember is; 

(1) @ a nd @ are identical in intonation and converse 

in temporal structure; 

(2) © and ® are ide11tical in intonation and converse 

-
. . 

--

--

.. 
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• in temporal structure; 

(3) G) and @ are converse in intonation and identical 
• temporal structure; in 

(4) @ and © are converse in intonation and converse 
. temporal structure; in 

(5) @ and © are converse in intonation and ide11.tical 

in temporal structure; 

(6) a11d @ are converse • J.Il iritonation and converse 
• in temporal structure. 

There is a way to obtain identical temporal 

structures for all geometrical inversions: any 

symmetrical group is identical with its converse. For · 

instance: 

(1) r5+4 = 4 + 1 + 3 + 2 + 2 + 3 + 1 + 4 

C3) u , , ,  1 u , ,  ,, u ,  , , , u  

• 

• 



0 

0 



\....J 

• • 

• 

• 

u 

There is also a way to obtain an identical 

pitch-scale for all geometrical inversions, when 

desirable. The original seale must be symmetrically 

constructed (whi.ch does not necessarily place it into 

the Third or the Fourth Group). In such a case the 

pitch units in © and @ are not idei.-itical but the 

scale structur e (that is, the set of intervals) is • 

For instance: 

® C - e �- f - g - bV (3 + 2 + 2 + 3) 1' 
bv_ 

, 

et;,-@ g - f - C (3 + 2 + 2 + 3) J 

d - f - · g - a - C (3 + 2 + 2 + 3) 1' 

@ C - a - g - f - d (3 + 2 + 2 + 3) i 

10. 

Examples of complete forms of contrapu·ntal 

continuity based on geometrical inversions: 

CP /4:" + CF @ + CF @ + CP @ + CF /4.' + CF 'c" + CP@ • 
(1) CF \!:/ CP CP CF CP� CP � CF · ' 

(2) CF -'a' + CP 'b' + CF 0 + CP '<I\ + CF ® cp lS-' CF \V  CP �  CF� CP ' 

(3) CP© + CF 'b' + .CP 'a', + CF /:;"\ + CF
@ CF cp '-!V CF� CP �  CP ' 

• 
We shall apply t.t1e first of the above schemes 

of continuity to the theme based on the exposition in 

type II of Fig. XX.VI. The theme will be used in its 

original ST version (i .e. , without the added balance). 
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12. 

As we have seen before, the interchangeability 

of CF and CP produces two forms for each geometri cal 

position. This property can be utilized for the purpose 

of producing conti nui ty based on imitati on. The two 

reciprocal expositi ons following one another are planned 

i11 su ch a man ner, that the fir st one cor1sists of an 

unaccompanied CF only, whi le the second has both parts . 

When CF exchanges its positions, the resulting effect is 

imitation • 

In the fol lowing example, Fig,. XXVI type III, • ' 
will serve as a theme. 

The complete continuity will follow this 

scheme: CF @ + gf@ + gi@ + g;(g) + g�@ • 
Figure XXVIII . 

(please see next page) 
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14. 

Lesson CLIX. 

Correlation of Melodic For�s in Two-Part Counterpoint 

We have achieved s0 far the harmonic and the 

temporal correlation of .t�o me:,lodic parts. Melodic fo1--ms 

have been plam1ed in some general way, and many details 

were merely the outcome of the harmonic treatment of intervals. 

Now we arrive at the point where systematic 

treatment in correlating melodic f9rms becomes necessary . 

As melody is expre.ssed fundamentally by means of an axial 

combination, the correlation of two melodies becomes 

essentially tile problem of coordination between the twQ 

axial groups. 

We shall start this analytical survey with 

monomial axes for both CF and CP. 

Under such conditi ons the following 25 forms 

become possible. 

a O b O c O d 0 · - · - · - · - · - · - · - · - · ' 0 ' a ' o ' b ' 0 ' c ' 0 ' d ' 

a . b . a . C . a . d . a . b . C • b . - ' .- , - ' - ' - ' - , - ' - ' - ' - ' a a b a c a d b b c 

d . b . C • d . C • d - , - , - , - , - , - . b d c o d d 

It is important to note that the various 

forms of balancing and unbalancing are inherent with the 

above combinations. The analysis of two parts being 

parallel or .contrary is not suf'ficient, as, under either 

conditions, one voice may be balancing and the other may 
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15. 

be unbalanci ng, or both voices may be balancing as 

well as unbalancing. 

For example: 
CF _ b .  d . b .  a 
CP - b ' b ' c ' ct • 

In the first case both voiaes are parallel 

and balancing ;  in the seco11d case both voices are 

parallel, out CF is unbalancing and CP is balancing; 

in the third case both voices are contrary, but both 
• 

are balancing; in the fourth case both voices are 

contrary, but both are unbalancing. 

It ·follows from the above consi._derations, 

• 

that in order to achieve continuous motion in two-part 

counterpoint, it is necessary to introduce ah unbalancing 

axis in one of the parts when the other part is moving 

toward balance, unless a c.adence is desired. J .s. Bach 

Aad more of parallel motion than it is usually believed 

to be, but he always managed to avo id cadencing, except 

where it is obviously intended. On the other hand, 

many academic theoreticians advocate an abundance of 

contrary motion as being· essentially contrapuntal. This 

in itself is of little importance, and beeorues a source 

of monotony, unless coupled with the composition of 

balance relations between CF and CP. 

Thus, the selection of axial combinations 

for the two counterparts (or for one· counterpart to a 

given part). depends upon t.he form of expression. 
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16. 

Axial relations with regard to their 

directions are: (1) parallel ; (2) contrary; (3) oblique. 

Axial relations with regard to their balancing 

tendencies are: 

(1) � ; (2) i ;  (3) � ; (4) i . 
In addition to this, the zero-axis expresses 

a coritinuous state of balance .. 

All further development of oorrela ting axial 

• 

combinati ons of two melodies follows the ratio developIDent 

of the quantities of axes in one part 111 r�la tion to 

another. 

Under such conditi ons, 

cases refer to one category only: 

all 
· cp 
CF 

the above described 

= ax, i.e. , one 

secondary axis of counterpoint corresponds to one 

secondary axis of ca11tus firmus; ax is an abbreviation of 

the word axis • 

Nov; we arrive at the binomial relations of 

axial groups of the counterpoint in relation to the 

C&"l.tus firmus : 

CP 
CF 

2ax and ax 
ax 

2ax 

Under such condi tio11s, a monomial axis of one 

part corresponds to · a binomial axial combination of 

another. 

For instance: 
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CP - O+a • a+b • c+d b+O d+a - • • 
0 , b , a , C ' 0 ' • • • 

CP 0 b a C 0 • • • • 
CF - , a+b , c+d , , ' • • O+a b+O d+a • 

It is easy to see that the re are 200 such 

simultaneous combinati ons, as there are 10 origi nal 

binomial axial combinations, each havi ng 2 permutations. 

20 combinations are now combi ned verti cally with 5 

monomials (O, a, b, c, d). This produces 20 •5 = 100. 

Finally, ·100 must be multiplied by 2, as each simul-

taneous combination can be inverted. ·. 

The period of duration of or1e axis equals to 

the sum of durations of the two axes constituting the 

binomial. Thus, in a combination: 

C
C� =  2� - axmt + axnt - T - 1, the time period -

axpt - Y -

for both parts is the same. 

Time ratios for the binomial axes must be 

selected in accordance with the series which the 

monomial • represent. axis 

For instance, the duration of ax of CF is 8T; 

then, CP can be matched as any binoroial of 8 series . 

Let us select the 5+3 binomial of this �ries.. Now we 

can define the simultaneous temporal relations as follows : 

CP _ ax5T + ax3T 
CF ax8T 

In a simultaneo us combination of a binomial 
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18 .. 

versus monomial axial combination it acquires the 

following significanc e:  during the period of duration 

of a monomial axis (balanced, balancing or unbalancing) 

its counterpart has two phases which may be: :U+u; U+B; 

B+U; B+B. If we sing le out a continuous balance 

(O-axis) as an independent form, we obtain 12 forms of 

balance relations between CP and CF, when one of them 

is a binomial and the other a monomial. 

CF _ ax _ O . . 0 . 0 . 0 . 
CP - 2ax - U+U ' U+B ' B+U '  B+B ' 

u u . ...._;.,.,.. . U+U ' U+B ' 

B . B . 
U+U ' U+B ' 

u 
B+U ' 

B 
B ' +u 

B+B ' 

B 
B+B • 

The same quantity is available for GP - ax 
..;;__. - --
CF 28x • 

If 0-axis partic ipates in a binomial , there are 15 more 

combina.�ions, as O+U, O+B, B+O, O+O would have to be 

multiplied by 3. 

Let us select 

and let it be: CP _ 2ax 
CF ax 

one of the possible 
_ U+U _ d+a - -

C • 
combinations, 

Suppose CF = BT and we match the previously 

selected time-ratio1 for CP. Then the correlation of 

CP 
CF 

appears as follows:  CP _ 
CF -

d5T + a3T 
c8T 

In this case CP unbalances for 5T in the 

direction below its P.A., and unbalan� es still further 

• 

• 
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19 ., 

in the direction above its P .A. for 3T., While this 

happens, CF moves. steadily toward its own P.A. in the 

upward direction, during the course of 8T. 

FifillE e XXIX . 

• 

CP - · - - - - - · - - - - - - - - - · · ·  

CF -- - - - - - - - - - - - - - - - - • 

• 

In the same fashion, trinomial axial combina

tions of one part can be correlated with a monomial axis 

of another. The quantities of simultaneous combinations 

equal the number of trinomials times 5., 

There are 60 trinomials with two identical 

terms (see Theory of Melody) and 60 trinomials with all 

terms dif" f erent. This 

the same quantity for 

yields: 
CF 
CP • 

120 •5 = 600 for CP and 
CF 

As t.he number of axes in one part is three 

and in the other part -- one, we can write: 

CP 3ax - or CF - ax 
CP ax - ....... -CF T 3ax • 

In each case� the tri nomial requires three 

temporal coefficients, the sum of which equals to that 

of monomial. 
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• 

g� = 3� = axmt + a�� + axpt , �"lhere mt + nt + 

+ pt =  T. 

Let T equal 5. Then, by selecting 2+2+1, 

which is one of the trinomials of i series, we obtain : 

CP 
CF 

ax2T + ax2T + axT 
ax5T • 

The trinomial distribution of the o, U arid .B 

gives the following number of the forms of balance. 

O+O+U; O+O+B; U+U+O; U+U+B ; B+B+O; B+B+U. 

Each of the above 6 combinatio�s has 3 

permutations, giving the total of  6 • 3  = 18. When each 

of these variations is placed against O, U or B in the 

counterpart, the number of forms becomes tri pled : 18•3 = 

= 54. 

Thus both g� and g� have 54 forms each. 

But the above forms contain trinomials with 

two identical terms. The addition of trinomials without 

identical terms produces one combination: O+U+B, which 

has 6 permutations� These 6 forms, being placed against 

the three poss-ible forms of the counterpart, produce 

balance of 

for CF 
CP • 

CP and CF have 18 forms each. 
CF CP 

The total of trinomial combinations of 

CP is 54 CF 
+ 18 = 72, and the same number 
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When secondaI"'"f axes are substituted for 

the forms of balance, each case gives more than one 

solution. For example: CP = U+O+B 
CF U 

• 

(1) u 
(2) 0 

(3) B 

CP 
CF 

- a ·  - ' 
- 0 -
- b ; -

CP 

u = 

B = 

Then 

- a+O+b • - ' a 

d+O+b • 
a , 

CF 
• 

d ;  u = a ·  u - d .  -, 

c; 

the following solutions are available: 

a+O+b • a+O+c • a+O+c • 
d ' ' d , a 

d+O+b • d+O+c • d+O+c 
d , a , d • 

5 Let us assign the pr eviously discussed 5 
series trinomial time ratio. We yield the following 

solutions: 

CP 
CF 

= =a�2-=-T_+.;.........;0;::.;2=..:T::;..,...;+�b:.=..T 

a5T 
a2T + 02T + bt • • ' d5T ' 

a2T + 02T + cT 
a5T ' 

a2T + 02T + cT . d2T + 02T + bT .  d2T + 02T + bT . 
d5T ' a5T ' d5T • ' 

d2T + 02T + cT d2T + 02T + oT • 
a5T ' d5T 

Figure XXX. 

(please see next page) 
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• 

• 
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Lesson CLX. 

Ultimately a polynomial axial combination 

Cfu"'l serve as the counterpart to a monomial axis. The 

effect of such � correlation is instability (poly

nomial) versus stability (monomial). The selection of 

forms of O, U and B depends upon the effects of balance 

necessary in each particular case. The abundance of 

unbalancing axes results in restless, disquieting, 

unstable melodies. Such melodies are termed as 

dramatic, passionate, ecstatic, etc . The abundance of 

balancing and the 0-axes produces the restful, quiet, 

stable melodies. They are usually termed as contem

plative, epical, serene. 

Examples of composition of 

Let m = 5; then: g� = 
5ax 

ax • 

CP 
CF 

_ max 
ax 

• 

Let us consider the following balance-group: . .  

U+B+U+B+U. Let us assume that the two extreme terms 

are identical, but different from the middle one. Then 

. the possibilities for the u , s  are: 

(1) a+d+a and (2) d+a+d 

Let us select the fir st combination . Let us 

assume that both B's are identical but on the opposite 

side of P.A. from the two identical urs. Then we get: 

c+c for the B+B. The entire axial combination for the 

CP appears as follows: 
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• 
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• 

CP = a+c+-d+c+a 

Let CF be represent ed by B, and let it be 

b, in order to achieve greater variety of balancing 

forms of CP in relation to CF . 

CP _ a+c+d+c+a 
CF b 

24 • 

Let the duration of the entire group 

Let the temporal coe fficients correspond to ! 
be 16T. 

series 

on the basis of t = 2T. Then, by selecting a quinti

nomial ( for the five axes of CP) , we obtain the 

following temporal scheme: 

CP a4T + c2T + d4T + c2T + a4T 
CF = _____ b_,,,,1_6=T-------

Figur e XXXI . 

r + L • r-- -�i-,;"; ; 1- - 1 

. i .. 
! 

1 
C P  . • .i • • • • __. • • • • -· _. • .... � • ._ ., -1•-• • • ,. • .. • e; 

1 
• 

CF 

I 

I 
1 

-

l 

The temporal ratios, discussed so far, 
CP referred to the form CF .= 1, 2, 3, ... m. 

Such axial relations can be further developed 

into polynomial groups in both CF and CP: . 

• 

/ 
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25. 

(1) Through the technique prev1ously applied to the 

.composition of attack-groups (see Melodization 

of Harmony) ; 

(2) By the direct application of ratios producing 

interference. 

The first technique makes it possible to 

match any desirable number of axes of the CP against each 

axis of the cf. 
Let us take CF with 4 axes. Vve can match 

2, 3 or more axes of CP against each axis of CF and in 

any desirable sequence� 

For example: CP = 
CF 

2ax + 2ax + 2ax + 2ax 
ax ax ax ax 

By assigning temporal coefficients in such 

a way that the sum of durations in each 2ax of CP 

corresponds to the duration of ax of CF, we acquire a 

synchronized CP 
CF • With the temporal coefficients based 

on r5+4, for instance, we obtain the following correlation : 

CP = ax4T + axT + ax3T + ax2T + ax2T + ax3T + axT + ax4T 
CF ax5T ax5T ax5T ax5T 

Let O+b+c+a be the axial combination of CF, 

and (O+a) + (O+b) + (b+O) + (a+O) -- the axial combination 

of CP. Then CP 
CF acquires the f olloYv"ing appearance. 

CP = 
04T + aT + 03T + b2T + b2T + 03T + aT + 04T 

CF 05T b5T c5T a5T 

• 
• 
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Figure XXXII. 
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26. 

• 

When proportionate relations of the temporal 

coefficients of g� are desirable and a 'constant number 

of the axes of CP is assigned against each axis of CF, 

the technique of distributive involution solves the 

problem • 

For example : CP 
..,.CF

.,.. = 9ax 3ax 3ax 3ax - + + 3ax - ax ax ax • 

To carry out this form of correlation in 

proportions, we shall select the square of 2+1+1 of the 

series. 

CP _ ax4T + ax2T 
ax8T 

+ ax2T + ax2T + axT + axT + 
axl:T 

ax2T + axT + axT 
CF ax4T 

Let the axial combination for both CP and CF 

be the trinomial a+b+c. Then: 

CP _ a4T 
CF 

+ b2T + c2T + __ a __ 2 __ T_+ ___ b_T_+_c_T + __ a __ 2_T_+ __ b_T_+_c_T 
a8T b4T c4T 

• 

• 
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Most complex temporal relations result from 

the quantities of axes in CP and CF, whi ch produce ' '-
interference ratios ., We shall discuss here only the 

simplest forms of such interference, which require 

uniform temporal coefficients for both CP and CF, only 

different in value. This corresponds to Binary SY!}

chronization as described in th e Theory of Rhythm.  In 

th is sense an % ratio represents the number of 

secondary axes in the two counterparts. 

Let us take 2 ratio. 
2 

Under such conditions 

CP _ 3ax or CP = 2ax 
CF - 2ax � 3ax • After synchronization, the 

first expression appears as follovvs: 

CP _ ax2T + ax2T + ax2T - -----=---=--
CF ax3T + ax3T 

Let CF consist of O+d and CP -- of a+d+O. Then : 

• CP _ a2T + d2T + 02T 
CF 03T + d3T 

• 

• 

• 
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Series of acceler·ations used in their • • 

reciprocal directions serve as another material for 

the temporal coefficients of CP 
CF • This technique 

28. 

produces two counterparts in the form of growth versus 

decline. 

An example: 

CP - axT + ax2T + ax3T + ax5T 
CF - ax5T + ax3T + ax2T + axT 

Axial combinations: CP _ a+b+c+d H CF - a+b+c+d • ence: 

CP - aT + b2T + c3T + d5T - ---------------
CF a5T + b3T + c2T + dT 

CP ' 

CF 

I 

Figure x:t.rv. 
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This case illustrates the f.act that even 

identical axial combinations in both counterparts can 

be made contrasting by the reciprocation of temporal 

coefficients. 

An obvious contrast of some axial combinations 

against their ovm magnified versions can be achieved by 

means of the coefficients of duration applied to the 

original group of temporal coefficients� 

An example : 

CP = 2(ax3T + axT + ax2T + ax2T) 
CF - ax6T + ax2T + ax4T + ax4T 

Axial combination: CP _ a+b+c+d 
CF a+b+c+d • Hence: 

CP = a3T + bT + c2T + d2T + a3T + bT + c2T + d2T 
CF abT + b2T + c4T + d4T 

� 

Figure XXXVI. 
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Lesson CLXI, 

After the correlation of temporal coefficients 

has been established, the cqrrelation of pitch ranges of 

both counterparts must follow. 

Identical secondary axes may have a different 

rate of speed. In terms of pitch ranges it means that a 

greater range may be covered in the same period of time 

as the smaller range. 

Identi cal axes having different pi tch-ranges 

produce noticeable amount of contrast. 

CP _ axT2P 
CF axTP • Let a be the axis in both parts. 

Then: CP _ -aT2P 
CF aTP • 

Figµre XXXVI I  . . -

CP 
I i I ' I ' 
1· • ., - - - - • • ---- - ... 

i - • - ---�· • • • ·r· ·· 
·-· ·+ . ......  I 

CF . l. . . . � . . 

When the two counterparts are repr.esented by 

the axes identical with respect to balance, but non

identical in structure, the contrast becomes still more 

obvious. 

J 



0 

0 



V 

• 

\.J 

(1) 
CP _ B 
CF - B • 

CP _ b2P . c2P . b3P . c3P . b3P . c3P . 
CF - cP ' bP ' cP ' pP ' c2P ' b2P ' 

(2) 

Figur e XXXVIII. 
f 

' I r l r , 
t I 1 I . 

· .r :_ l 

CP _ U 
CF - U • 

' 

I 

CP = a2P . d�P . a3P . d3P . a3P . d3P . 
CF dP ' aP ' dP ' aP ' d2P ' a2P ' 

Figure XXXIX . 
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32. 

Still greater contrasts result from juxta

position of pitch ranges of the two counterparts,, when 

the axial structures differ with respect to balance. 

CP _ a2P - -- . CF bP ' 
a2P 

cP 

CP - U 
CF - B . 

d2P . -- . d2P 
' bP ' cP ' 

Figure XJ, . 

I 

• • • 

• 

0-axis is not to be concerned with, when 

correlating pitch-ranges of the two counterparts. 

• 

As pitch-ratios may be in direct, oblique or 

inverse relatior1s with the time-ratios in each part, 

correlation of the tv10 counterparts offers the following 

fundamental possibilities: 

CP = T+P direct . 
CF T+P direct ' 

T+P oblique . 
T+P oblique ' 

T+P opl�que 
T-;-P direct ' 

T+P 
T+P 

inverse . 
oblique ' 

T+P inverse 
T+P direct ' 

T+P inverse 
T+P inverse ,, 

The second, the third and the fifth forms 

have another variant each (by inversion). Thus, the 

• 
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total number of the above relati ons is 6+3 = 9. 

(1) 

(2) 

Examples: 

CP _ T+P direct 
CF T+P direct 

CP _ bTP + o2T2P + a4T4P . 
CF - d4T4P + b3T3P ' 

CP _ aTP + b2T2P + a 3T3P + d4T4P 
CF 04T + a3T3P + c2T2P + bTP 

Fi ure XLI. 

(•) 
I • T 

• 

(�) 

C p . . . . .. �. .  . . . . . . .. . . . . . . . . . . . .  . 

C F  

t 

• 

. • 

t 
CP T+P direct 
� - -----=;.._..,;._;;;. 

CF - T+P oblique 

I 
L 

) CP _ a4T4P + c2T2P ( l  CF - dT3P + c2T2P + d2TlP ; 

(2) 
CP = b3T3P + dTP + c2T2P + a2T2P 
CF dT4P + b3T3P + c4TlP 

• 

l 
I 
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... 
• 

• 
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Figure XLI I .  

I I -l 

CP .. • • • • • • • • • • • • ( p . . . . .  . 

(1) 

(2) 

• 

! 

Cf Cf" ..... ... . . . . . . . . . . . .. . . . 

CP _ T+P inverse 
CF - T+P direct 

CP a6T2P + b3T4P 
CF = b4T4P + d2T2P + c2T2P + dTP 

• 

• 

CP = =a�2T�2�P;,---+_.;.d�2=T�2P�_+ __ a=T=P
-=-

+=
d=T=P;.__,,+��a=2=T=2�P_+�d=2�T�2�P 

CF c4TlP + c3T2P + c2T3P + cT4P 
• 

Figure ,XLIII.  
-,.------:------- __,..-----

(1) 

CP 

CF 

., 

CP .... • • • .. • • • .. • • • • • • • • • • • • •  

c;:, F . - . . . . . . . . . . . .. ... . . . . •· 

+ + 

• 
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(1) 

(2) 

' ;, 

CP _ T+P obligue 
CF - T+P oblique 

CP _ a3TlP + a2T2P + bT3P + b3TlP + b2T2P + aT3P 
CF c3T5P + d4T4P + c5T3P 

CP _ bT5P + a2T4P + d3T3P + b4T2P + a5TlP � -
CF a7T3P + b5T5P + c3T7P 

(l) 

Figure XLIV . • 

(t) 

. ' 

C p -----.. .:.. . . . . T .. .. • - • • . .....  C p . . . . - . 

j 

.. • • 

• • 
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.... 

CF · · · · ·- ·  · · · · · · · · · · • • ..J.
· 
... . . . .  . C F  . . . .... . -. . .  __. . . . . . . . . . . . .... . . . . . .  ...... 

• 

(1) 

(2) 

CP == T-:-P oplig!}e 
CF T+P i nverse 

• 

CP _ b3T2P + · c3T3P + b2T3P 
CF - aT2P + b2TlP + c2TlP + d3TlP ' 

CP _ a4T3P + d3T3P + a3T4P 
CF - cT4P + b2T3P + b3T2P + c4TlP 

• 

t 

f 

• 
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CP 

CF 

(1) 

(2) 

Figure XLV . 

(l.) 

C p
. . . . . . .. ... . . . . ..... ... .. . . . . .  

C F ··· · · · · · · · · · · · : · 

CP _ T+P inv erse 
CF - T+P inverse 

CP _ a3T lP + cT3P + c3TlP + aT3P 
CF - a5T3P + b3T5P 

CP _ cT2P + c2TlP + b2TlP + b4T2P 
CF - d6T3P + d3T6P 

. . . . . . ... 

• 

• 

36. 
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Example of App lication ' 

CP _ T+P direct � -CF T+P inv erse 

CP - a4T4P + b3T3P + a3T3P + b2T2P 
CF b8TlP + d4T2P 

T(CF) - (4+3+3+2) 2 - (16+12+12+8) + - -
+ ( 12+9+9+6) + (8+6+6+4 ). 

• 

T(CP )  ( [I] +l+l+l+ ltl+l+ l+ l+l+ l+l) -

• 

. . 

. ' .... 

(12+9+9+6) + 

r ➔ 

• 

1 
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A�ial combination of CP 
CF in its general form: 

C p . . .... . .  �· . ... . . . .  . 

' . 
.. t 

f 

.., 
• 

38 .. 

' 
Let CF be constructed from C-maj.  nat. d0 

scale a11d CP -- from A�- maj .  nat . d� scale. Let 

P = 5p wit h approxim ation. Under such conditions, the 

range of CF will be abo ut an octave and a half, and 

the range of CP -- about two octaves . . 

Figure XLVII. 

' 

( please see next page) 
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Composition of the counterp�rt to a given melody 

by means of axial correlation. 

-

. • 
• 

In order to accomplish the process of 

correlation of counterparts by means of axial 

correlati on, it is necessary to reconstruct the axial 

group of the given melody first. After the analysis 

of TP ratios of CF has been accomplished, it is 

• 

' • • 
, -

-

• 
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important to detect whether the T+P is of direct, 

oblique or inverse form. After this, the general 

planning of the CP axial combination must follow. 

40. 

Fir st -- with respect to T+P correlation, and second -

with respect to the axial combination itself and its 

T+P ratios. 

The following graph is a transcription of 

Ben Jon son ' s "Dr ink to Me Only With Thine Eyes" . 

Figyr e XLVIII. 
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This melody contains a modal modulation. 

P.A. 1 is .. Phrygian (d
2

) ar1d P .A. 2 is Ionian (d0) .  

The entire axial gr.oup gradually gravitates toward 
. 

P .P . • 2 , where it forms its absolute balance. If vve take 

into account all the minute crossings, analysis of the 

axial group appears as follows. 
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P.A. , = a6t + b2t + dt + ct +  a2t + b3t + d3t 

P.A.
2 

= b3t + 05t + llJ . 

The modulation is performe d by establishing 

the correspondence between d3t (P.A. ,) and b3t (P.A. 2 ) .  

We can say that: d3t (P.A. , ): b3t (P.A. 2). As pitch 

ranges are approximately equal, the P- ratio may be 

regarded as constant . 

Let us devise a counterpart in 1+4 time-

ratio • . This would mean that CP v,ould have only. one 

secondary axis. As the general tendency, of CF is 

gradual gravitation toward balance in the course of 

two oscillations (which correspond to four directions 

and eight ;individual axes), we shall introduce b-axis 

for the counterpart.. Then CP will consist of one 

direction, consistently gravitating to,vard balance. Under ' 

such conditions gi represents a complete cycle of 

development . 

This counterpart corresponds to the case 

(2) in group (a) of Fig. XXII , where CP has an Aeolian 

P.A.  (ds ).  

figure XLIX. 

(please see next page) 
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J O S E P H S C H I L L I N G E R 

C O R R E S P O N D E N C E C O U R S E  

With: Dr. Jerome Gross Subject : Music 

Lesson CLXII. 

The Use of Symm�tric Scales 

in Two-Part Coupterpoint 

The unity of style requires th.at both counter

parts are based on symmetric scales, if one of them is • 

Scales of the Third Group and scales of the 
' 

. Fourth Group, mostly in contracted form, s�rve as 

material for counterpoint. It is acceptable to have one 

counterpart in the Third Group and another either in the 

Third or in the Fourth Group. When the two counterparts 

belong to the different groups, two cases can be observed:  

(1) both scales have identical set of pitche�; " 

(2) both scales have different set of pitches. ' ' . • 

Example : 
T r  T 

d�-
Ta a4 - T, 

a;_ � 
-

C f e C - - - -..._ 
(1) 

� 

T, 
dl,-

T2 !•- T ,  
C e f a - C - - - -

� L..-

T,  
·e� - f 

T2 
4F 

T , 
� 

-
C d f'f'- g - a - b C - - - -

L 

(2) 
T,  !�- bV - d'-

Ta 
r*- a 

� 
ef- e� -- C d - f - g - - -

L..... \ '--

Ti 
- b - C 
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2. 

Relations of the harmonic axes of the two 

counterparts can be carried out in all four forms 

previously used. Their meaning with regard to symmetric 

scales appears as follows: 

Type I (U .u .) : both scales have the same T , ,  the same 

number of tonics and an identical set 

of pitch-units; 

Type II (U.P.) : both scales have the same number of 

tonics, their sets of pitch-units are 

identical, but their harmonic axes are 

on different tonics; 

Type III (P.U.) : both scales have an identical form of 

symmetry (the quantity of tonics) and 

an identical set of pitch-units; none 

of the tonics of one scale have common 

. . 

pitches with the tonics of the other, 

i.e.,  the two sets of tonics belor1g to 

the mutually exclusive sets of pitches; 

Type IV (P.P.) : the two scales belong to either identical 

or non-identical forms of symmetry; 

• 

their sectional scales are of non-

identical structure, yet belonging to 

one family (according to the classifica

tion offered in the First Group of 

Scales) ; the two sets of · tonics belong to 

the mutually exclus,ive sets of pitches. 

• 
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ExampJ�s of two-part counterpoint executed 

in the scales of the Thir d  and the Fourth Group 

Figure L.  
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Lesson CLXIII . 

Continuous (Canonic) Imitation . 

The source of Continuous Imi t_ation, usually 

known as Canonic,  is a well known phenomenon of 

acoustical resonance, bearing the name of Hellenic 

nymph Echo. Before any composer existed on this planet, 

nature created by chance a quintuple echo "Lorelei" 

(which can be justly called five-part canon) discovered 

on the Rhein. Admiral Wrangel (Russian) describes a 

place in Siberia, where the river Lena enters - a canyon ., 

about 600 feet high and where a pistol shot rapidly 

repeats itself more than a hundred times. 

How would you like that for a canon? • 

Music theorists, which is typical of their 

species, think canon to be a purely esthetic development. 

VVhatever they think, it is a natural phenomenon and tl1e 

most ancient form of musical continuity. 

Th.ere is a common belief that it requires a 

great skill to write a canon. In reality, the real cause 

of any dif.ficulty in writing in this form is methodo

logical incompetence. Both music theorists and composers 

are guilty, because they have not been able to forroulate 

the principles of continuous imitation. 

·I will not discuss the case of Sergei Ivano

vic h  Taneiev, as his interpretation of the canon 
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requires the knowledge of his "Con�ertible Counter

point of Strict Style" ,  which is a highly complicated 

system and deals with the Strict Style only. Besides, 

it does not bring the solutiun to melodic and rhythmic 

forms, being mostly preoccupied with the vertical and 

horizontal convertibility of intervals in the harmonic 

serise. 

Canon is a complete composition written in 

the form of continuous imitation . 

The usual academic approach to this form is 

such that the student is taught first how to write an 

11ordinaryn imitation (scientifically: discontinuous 

imitation) .  After not getting anywhere with this form 

of imitation, he begins to struggle with the canon . 

As from the start the principles of any imitation are 

not disclosed .to him, it doe s not make any difference 

whether the imitation is discontinuous or continuous. 

Once such principles are defined and the technique is 

specified, it becomes obvious that the discontinuous 

imitation is merely a special case of continuous 
0 

imitation. 

With this in view, we shall establish the 

principles of continuous imitation . 

• 

Continuous imitation consists of one melody, 

coexisting in two different parts in its different 

phases and at a constant velocity. - . 

, 

• 

) 
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This melody, being of identical structure 

in both parts, may vary in intonation. The latter 

condition takes place only when the scale-structure 

itself varies. 

• 7. 

The temporal organization of cont inuous 

imitation has no direct influe11ce on the duration of a 

canon. Longer rhythmic groups are preferable, however, 

as continuous recurrence of the same rhythmic structure 

becowes, eventually, monotonous. 

• 

The main source of continuous - self-stimula-tion 
' 
\. 

in a canon is its melodic form, i.e. , the axial group. 

With the devices offered in the Theory of Melody (see 

Chapter II) it is possible to evolve an axial group of 

great extension and, if necessary, wit.bout any repet.itions. 

Thus, the continuance of melodic flow becomes completely 

protected. 

The correlation of harmonic types and the 

treatment of harmonic intervals remains the same as for 

all· other forms of contrapuntal technique. This permits 

to compose canons in unitonal as well as in polytonal types. 

Temporal Strucj:;ure of Cop;tinuous Imitatiop. .. 

A complete composition based on continuous 

imitation is known as canon. 

The duration of continuous imitation or of a 

canon is the multiple of its temporal structure. The 

temporal structure of a two-part canon is related to the 
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theme of the canon as 371. The first third is the 

aru,.ouncement, the second third is the imitation of 

announcement in the first voice and the counterpoint in 

the seco:t1d voice, and the last third is the imitation of 

the first portion ·of counterpoint in the second voice and 

the second portion of counterpoint in the first voice . 

After the temporal scheme is exhausted, it begins to 

repeat itself with new iritonations. 

Pi 
If we designate the first entering voice as 

(whether upper or lower) , the second , entering voice 

as "P!r, the first ann ouncement as CPj , the first portion 

of counterpoint as CPa, the second portion of counter

point as CP, etc. , the temporal structure of a canon 

ap�ears as follows : 

The continuation of the 

temporal structure does not alter the process, merely 

increasing the subnumerals of CP in the original 

relation : 

+ CP, + + CP-. 

CP� 
• • • 

The temporal structure of any two-part canon 

is based on two elements, which appear as reciprocal 

permutations. All forms of variation of two elements 

are applicable therefore to two part canons (see Theory 

, 

I 
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of Rhythm). Let a and b be two elements representing 

any kind of duration-groups. Then, 

a + b + a 
a + b , and the continuation of tbe 

temporal structure assumes the following appearance :  

= a +  b + � + b + � + ·b + � + • . • a + a + a + 

The duration of a temporal structure is t�e 

real factor controlling the flow of the canon . The 

longer the structure (not by speed, by the quantity of 

attacks) , the greater the fluidity of the canon. 

Duration-groups of all kinds are acceptable as temporal 

struct�res for continuous imitation and for the canon. 

(1) 

(2) 

,,. 

A. Temporal structures compose� from the parts • 

of resultants. 

I 
O ·  

J J n n 

, 

J .  

J J J J 

, 1J u ,  

Ot, 

n 

, 

I 
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B. Temporal s�ructures c9mppsed from 

co�Elete resultants . 

(2) r5+4 

4 
4 

J . J  J J J  J · J J  J J . J . J J J J 

r · , 9 1 ,  1 1 '\  , � -

• 

, r ·  r r 'f • , 0 

• 

• 
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-� - ,, � I 
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-
'l · ,,., q . , . 

,...., 
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C. Temporal structures evolved by 

mean? of permutations. 

ot. 

.......... ...... 
1. • , v'l • 

-
,.,. , q . 

4 u 1 1 ,  1 u , ,  , , u , , , , u u , , ,  , u , 1  

• 1.11 , t  1 u , 1  , r u t  r t t u 
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(1) 

(2) 

D. Temporal structures composed from 

synchronized involution-groups. 

3(2+1) + (2+1) 2 

3 J .  - '-" 
4 

a.. 

d .  J .  

...g 

J . J J 
f ·_, f • 

4 (2+1+1) + (2+1+1) 2 

a. --€ 

4 
0 J J J J J J fl J Jl 

4 C f f 

J j  J . J .  ...__ 

f ·  f .-../ ,  f 
-<; 

0 d d 

f , , , u , u  

(3) (3+1+2) 3 + 6(3+1+2) 2 

fa 
.---+-. 

12 C .  0 .  
8 

-

12. 

J .  
r , 
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E. Temporal structures composed from 

acceleration-groups and their inv�s.iorisl . • 
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Lesson CLXIV. 

Composition of canons in. all four typ�� 

of harmonic correlation. 

15 . 

As canon is a duplication of melody at a 

certain tj.me interval, the differences of intonation 

in the two counterparts are due to scale-structures. 

Thus, type I produces identical intonations, type II -

non-identical ir1tonations, type III -- identical 

intonations and type IV -- non-identical intonations . 

The choice of axes in all four forms of correlation 

remains based on the . original principle: cor1sonance 

between the axes of two counterparts. In types II and 

IV the starting P.A. can be in a dissonant relation with 

the P.A. of the first voice, but it must end on a 

consonance. 

As continuous imitation can go on indefinitely, 

we have to know the exact technique of bringing it to a 

close . Cadences are produced by ·the leading tones moving 

into their primary axis. As the first moving voice 

defines what happens to the second voice, all that l.S 

to produ ce a leading tone . the first . necessary is in 
• . When this portion of melody • transferred moving voice. l.S 

to the second voice, the first voice produces it•s own • 

leading tone, after which both voices close on their 

primary axes. 
• 

• 
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The use of symmetric pitch-scales is 

applicable to cano11s as well. 

• 

Type I 

• •  

- • r 

Type II 

, . 
. --

- • 

Exa,oples of two-part canons in all four tYJ?es 

of harmonic correlation. 

Figure LI. 
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Composition of Canonip Cont�nuity by means 

of Geometrical Inversions . • • 

� I � 
,J 

. , • ' 

The original canon can be considerably extended 

by means of geowetrical inversion.  

Tl1e voice entering first produces the axis of 

inversio11 for the positio11s © and @ . The final 

balance of the last cadence must not participate in the 

sequence of inversions, as this would disrupt the 

continuous flov, of the canon . It must be used only at 

the very end of the coroposition, if the canon er1ds in 

position @ or @ .  Otherwise a new balance must be 

added. 

Under sue� conditions, the canon consists of 

several cor1trasti11g and indevendent sections of 

continuous imitation. 

Example of a canon developed thrOU£h the 

use of geometrica� inversions. -
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Each geometrical inversion allows the use of 

two vertical permutations of the counterparts ; Octave 

readjustment of the parts becomes a necessity under such 

conditions . 
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Lesson CLXV. 

Fugue 

A complete -composition based on discontinuous 

imitation constitutes a Fugue. 

, A fragmentary (incomplete) composition based 

on discontinuous imitation constitutes a Fugato. 

All other names established - in the past, like 

Sinfonia, Invention,  Praeludium, Fughetta refer to the 

same fundamental form , i . e . ,  Fugue. The difference is 

mostly in the magnitude of the composition (Fugue, 
\. 

Fughetta) or in the type of harmonic correlation of the 

counterparts. Thus a Fugue which is unitonal-unimodal is 

called Invention, Praeludium or Sinfonia. Praeludium 

'0eing the loosest term of all, as in many cases it has 

not.hing in common with the Fugue. A Fugue which is 

unitonal-polymodal (and of a specified polymodal.ity) is 

called Fugue. 

As in my opinion the presence or absence of 

polymodality · as well as or polytonality is a matter of 

harmonic specifications, which vary with time and place, 

any complete composition based on disc9ntinuous imitation 

can rightly be cal�ed fugue. 

Fugato usually appears as a polyphonic 

episode in a homophonic composition . 

• 
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The Form of a Fugue 

The temporal structure of a fugue depends 

on the quantity of themes (sub je cts). It is customary 

to call the fugue with one theme a nsingle fuguen and 

the fugue with two themes a "double fugue". Triple 

fugues are very rare, and a real triple fugue requires 

many parts (voices), otherwise th e idea that each part 

is a theme becomes nonsensical. 

For this reason it is expedient to confine 

the two-part counterpoint to. fugues with one theme only . 

Tr1e general characteristic of all fugues is 

the appearance of the theme in all parts in sequence. 

The complete thematic cycle is known as an exposition. 

In two-part counterpoint the first entering voice 

announces the theme (we shall call it CF, for the sake 

of unity in terminology) , after which the second voice 

enters with the imitation. This imitatio11 is usually 

called 11reply" and might as well have been called 

necho". In fact, it is tr1e same theme, with the possible 

difference caused by the form of harmonic correlation. 

Thus, reply in the types I and III is identical v1ith the 

theme, whereas in the types II  and IV it is non-identical, 

insofar as the scale-structure is modified. 

At the time the second entering voice makes 

its announcement (CF),  the first entering voice evolves 

a counterpart (CP) to it . Thus the form of the first 
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exposition (E , )  is as follows: 

Pr CF + CP - ---"'--------
Prr - CF and the form of any other - -

exposition (En) is : En = -- CF + CP 
CP + CF • 

25. 

In both cases the definition of the first 

entering voice (P1) and second er1tering voice (P11) ca� 

be inverted . 

In a fugue where CF and CP represent the only 

thematic material and no interludes are used, the entire 
\. 

composition acquires the following form : 

F = E, + E + E + • • • + En •  2 3 

In homophonic music this corresponds to a 

theme with variations. In the fugue the variation 

technique consists of geometrical inversions of the 

original exposition. 

The counterpoint to the theme can be either 
thru 

constant (i.e.,  the CP is carried out/the a1tire fugue), 

or variable (i.e. , a new CP is composed for each 

exposition). Statistically, the use o f  constant or 

variable CP is about fifty-fifty. In the XVII and XVIII 

Centuries constant CP was somewhat of a luxury , as the 

counterpoint which we consider to be general technique , 

at that time was known as vertically convertible 

counterpoint, which was believed to be more difficult to 
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execute. On the other hand, old composers did not lmow 

the technique of geometrical inversi ons, but used tonal 

inversions instead and merely as a trick, on some 

special occasions .. , With the systematic use of geometrical 

inversions, fugue becomes greatly diversified. Under 

such a conditi on, constant CP becoroes merely a practical 

convenience. Once the theme and the count erpoint are 

composed (preparati on of one expositi on) , you get the 

entire fugue by means of quadrant rotation arranged in 

any desirable sequence .. If rotatior1s refer to the entire 

E, the fugue assumes the follo,ving appearance: 

F = E t::'\ ' \!!!.I 
+ . • •  , where m, n and 

p are any of the geometric al inversions. 

For example: 

Such scheme s are subject to composers r 

i.J.1venti veness. 

Quadrant rotation may affect each appearance. 

of the theme, then theme and reply appear in the different 

geometrical positions. 
. . 

• 

____________,/. 
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For example : 

(1) E = 

(2) E = 

(3) E 

= 
CF@ + CP 

CP + C� 

• 

It is important to note that position is 

_always identical for two Si1DUltaneous parts. Thus, 

27 • 

' '-
CF@ means that CP set against it �s also in position @ . 

Quadrant rotation applied to theme and 

reply pr9duc es al together 16 geometrical forms of 

exposition. 

• 

Forms of  Imitation Evolved 

Through Four_ Quadrants 

Figure LIII. 

b 

b 

C 

d 

d 
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All cases referring to one geometrical 

position for the ·entire. E form the diagonal arrange

ment (heavily outlined) on the above table and appear 

to be special cases of the general rotary system. 

It is easy to see that with this technique a 

fugue of any length can be composed without any effort. 

An example of fugal scheme employing 

guadrant rotation • 

+ 
c� + CP @ 

+ E3 CP@) + CF@ 

+ 
CF G) +  cp·

(Q) E.r + 
CP @ + CF © 

+ 
CPG) + CF @ 
CF � + CP@ 

+ CF @)+ CP� E, 
CP @+ CF @ 

CF @ + CP@) 
CP @ + CF@ 

CF @ + GP@ 
CP@ + CFG) 

CFG) + �PG) 
CP@ + CF G) 

CP {li)+ CF@ 
CF@ + · CP@ 

+ 

E 41 + 

Ee + 

As this example shows, CF may appear in 

the same voice successively, when its geometrical 

position alters. 

The form of fugue where counterpoint is 

varied vdth some or with each of the expositions can 

• 
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also be subjected to quadrant rotation. 

The general scheme of such a fugue appears 

as follows : 

F = 

CF + CP , 
.... -�F - V 

CF 

CF + CPa 
+ CP a + CF s E 'I + • • • 

+ CP 1) 
+ CF E + 

2 

CF + CP 
+ CF 

µi example with application of the quadrant rotation 

F = 

• 

+ 

CF 

CF (E) + CP3 ® 
CP CF 

2 @ +  I @ 

CF 

E 
3 

+ CP3 
{g) E.( CP2 + CF 

CF + CP2 
+ CP

1 
+ CF E&.4 + 

CP� + CF� 
E6 + CF (ii) + CP , (g) 

E + 3 

In· the old fugue the· elimination of monotony 

was usually achieved by means of Interludes. An inter

lude (we shall term it : I )  is a contrapuntal sequence 

of the imitation or of the general type. Statistics 

show that about 50 out of 100 interludes are thematic 

(i.e., based on elements of CF or CP) and the rest 

neutral (i.e. , using thematic element.s of its own) . 

As in the case of counterpoint itself, I 

may be COHJ,Posed once and rotated af'tervfards.. In 

other cases a new I may be composed each time. In the 
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old classical fugues interludes served mostly as a 

bridge between ��e E•s,  and leading into new key. 

In our fugues of �fpes I and II they can serve the 

Sallle purpose, whereas in types III and IV the interludes 

are hardly necessary, as the key variety i s  already 

inherent with the group of different symmetric tonics. 

As Vfe shall see late1"', the fact that we h·ave two parts 

does not limit the quantity of tonics . 

The general scheme of a fugue with interludes 

appears as follows: 

This form is equivalent to the First Rondo 

of the homophonic music. 

I ,  I ,  I ,  .. . may be either identical 
f 2 3 

(though in different geometrical posi tions) or totally 

different. In, i .e . , the last interlude is quite a 

common f ea tur e iri the old fugues and has the rnea11ing 

of a conclusion (coda) . By rotating the same interlude 

we acquire new modulaton directi ons. 

The method of composing a fugue by this 

system consists of the follo,vi ng stages : 

(1) Com_posi tior1 of the theme; 

(2) Composition of the counterpoint (one or more) 

to the theme; this is equi,ralent to the 

preparation of an exposition; 
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(3) Prepa rati on of the exposition (or of all 

expositions if there is more than one 

count erpoint) in fo·ur geomet rical posi t1ons: 

CF @ CF @ • CF @ • CF @ • 
CP ' CP ' CP ' CP , 

(4) Composition of the interlude ( s) ;  

(5) Preparation of the four geometrical positions 

of the interlude( s) ; 

(6) Com position of the scheme of F ;  

(7) Assembling the fugue. 

• 

• 

• 

31. 
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J O S E P H  S C H I L L I N G E R  

C O R R E S P O N D E N C E 

With: Dr. Jerome Gro� s 

Lessoµ CLXVI, 

Composition of the, Theme 

C O U R S E  

pubject: :U.usic -

Theme in a fugue is  of utmost importance, as 

it constitutes at least one half of the entire composition. 

Nobody yet has defined clearly the requirements for a 

fugal theme. A good fugal theme is usually ascribed to 

the composer' s  genius, and this is neither help nor 

consola tion to the student of tl1is subject. We want to 

know precipelY_, what makes the_ melody a sµitabl� fugal 

theme, as experience shows that: (1 ) not every g ood or 

expressive melody makes a sui table fugal theme, and (2) 

not every sui table fugal theme is a good melody for any 
• 

other purpose. Compos.ers, who were . outstanding melodists, 

fai led to show important achieveme nts as contrapuntalists 

(Chopi n, · sohumann� Liszt, Chaikovsky and others) . 

The first regu1r�ment for a fugal theme i .s -
that it must be an ipcomplet� m elodic form. In the best 

and most typical fugues by J.S. Bach we find that such 

incomplete melodic forms follov1 their com pletion as * • e ■ a a • e = = 

counterpoint evolvin g during the announcement of the 

theme i n the second voice. 

• 

An incomplete melodic form i n this case means 

that at the moment the second voice starts the theme� the 
1 • $( 
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2. 

first voice does not arriv� at its primary axis, 

For an illustrati on, let us take Fugue II, 

Vol. I, Well Tempered Clavichord (later to be referred to 

as w.T.C.) by J.s. Bach. 

Figure LIV. 

• 
Pl: • 

• j ,- • I • l I t la t . ., c:: I • . 
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blELPPlG FORM\ 

The theme ends on the first sixteenth of the 

third bar, while the melodic form com pletes itself on the 

third quarter of the same bar. It is interesting to note 

that the theme (and the melodi c form) is constructed on 
0 the binary axis: a .  

ment clearly, Bach uses 

In order to present his 

½ ( =�) at the point 

announce-

where the 

theme might have stopped otherwise, reserving the eighth 

until the reply is  far on its way of developing. Thus 

Bach eliminates the danger of stopping, which, indeed, i f  

realized, would have sppiled the entire fugue. Another 

important detail is  the j uxtaposition of db-axis in  CP 
f 

versus 0-axis in CF. 

• 

JW. 
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All other requirements for a fugal theme 

really derive from the first one: all such resources 

of temporal rhythm and axial. forms ca n be used which 

demonstrate an unfinished melodic structure in the 

process of its fo rmation, 

The presence of any one of the following 

structural characteristics, as well as of !AY combinatio ns 
$ ( 

of the latter, produces a suitable fugal theme. 

(l) The presence of rests; particularly a decreasing 

series of rests, combined with an inc�easing number 

of attacks; stop-and-go effects; gaining momentum 

effects. 

(2) The sequence of decreasing duration-values: rhythmic 

acceleration in the broadest sense. 

(3) Dialogue effects achieved by means of binary axes, 

and by means o f  atta ck-groups contrasting in f orm, 

like legato-staccato. 

(4) Effects of g rowth, ach ieved by means of binary and 

ternary diverging axes. 
• 

(5) The presence of resistance forms (including 

repetitio n, phasic and periodic rotation), particularly 

leadi ng to climaxes. 

Coµibinations of the above techniques applied to 

.pne theme make the latter more saturated and tense, which 

increases the fugal characteristic • 

• 

• 

I 
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Figure LV, 

Fugal theme:5 b)'.' . J, s_. Bach and by just J. s. 

(Numbers in musical examples refer to the 

preceding classifications).  
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As it follows from the abov� examples, the 

total duration of a theme (i n terms of quantities of 

attacks, or in terms of bars) largely depends upon 

the eomposer t s  decision. However, the following 

generalization is true for most classical fugues: the 

duration of the fugal theme is  i n  1nvers� p�oportion 

to the number of parts. 

8. 

Indeed, the first theme of Fugue IV, Vol. I, 

W.T.C. has only five attacks; the theme in Fugue XXII, 

Vol. I, W. T .c. has six attacks. Both of � thes .e  fugues are 

written in  five parts. On the other hand, Fugue X of the 

sam e volume, written in two parts, has a theme of 

twenty-six attacks. 

It is not important that the reply enters 

on the same time-unit of the measure as the theme. Quite 

• to the contrary, difference in the starting moments (in 

relati on to the bar) adds interest . to the whole composi

tion, as it produces an element of surprise. 

Themes unsuitable for fugues can be subjected , 

to some alterati ons , which will make them suitable. 

It can be demonstrated, by reversing the 

procedure, that the mere addi ti on of 0-axis to any 

melodic form cap render it sui table as a fugal theme. 

J.S. Bacht s  theme from the "Toccata and Fugue" i n  

D- minor for Organ, being deprived of its 0-axis, loses . . 
all its fugal quali ty. When 0-axis is taken out, the 
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9. 

axial combination becomes: b+a+c+a. Thi s theme seems 

t o  have nothing but rotati on in relatively narrow range. 

The inclusion of 0-axis produces an effect . ·or- growing 

resi stance, and the axial combination becomes: 

- 0 
d+c+c • 

Figure LVI. • • 

The number of bars in  a fugal theme is an 

optional qua ntity. It may be pair or odd. It may be 

integral or fractional. Both odd and fractional are 

preferable to pai r and integral, becau se t he latter two 

suggest a cadence at the end of the theme. I believe 

one of the factors that influ enced Buxtehude and all 

the Bachs is the awareness of cantus firmus (in a 

strict sense) as a theme. Canti firmi usually had an 

odd number of attacks. 

• 
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Lesson CLXVII, 
• 

Preparation of, the Expo�ition 

After se·lecti ng the theme, th.e com.f)os'er must 

dev9te himself to the preparation of fugal exposition. 

As it is easy, with this method, to write 

· f our types of fugues on one trieme, it  becomes desirable 

to prepare four expositi ons for the future f ugues. In 

a two-part fugue, the entire preparati on of E consists 

merely of writi ng CP to CF. It is advisable that the 

expositi on prepared for each type would be written out 

in all geometrical positi9ns. This saves time during 

the period of assembling the fugue. Fugues of type IV 

often require preparation of two expositions, as when 
CP the axes exchange in cf , CP may not fit, and a new 

counterpoint must be written (CP11) .  

To make the demonstrati on of all techniques 

pertaining to fugue concise, we shall use & very brief 

theme • 

Figyre LVII, 
• 

(please see followi ng pages) 

• 

. -

• 

• 
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Composition of th� E2rnositions 

Composition of the expositions in ty pe I 

does not require any special co nsiderations, as bo th 

parts have an identical P.A. 

In type II, the modal modulations of  CF, 

and its respectively related CP, must be in one system 

of modal sequence. For example, if P.A. of CF, is £ 

and P .A. of CP , is !_, the axis of CF2 (reply ) must be � 

and CP2 (counterpoint to rep ly ) must have P.A. on .Q., 

in order to retain the axial unity in the first part 

� • 
:1 

:,#= -' 

for the course of one exposition, an d in order to preserve • 
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the vertical relation of g� as it was originally 

conceived. 

The entire structure of the fugue ( from the 

above relations) appears as follows: 

F = (CF, + CP, )£ 
CF:a � 

(CF3 + CPa)� 
CP2£ + CFlf ! 

(CF,r + CP
.r )! 

CI!, � +  CF6 � 

where .Q., .!., f, .!!, • • •  are the primary axes of the 

respective parts. 

becomes: 

Likewise if 

C - + 
A 

A 
c+d - -

C - - , the sequence of P.A. • s  

+ • . • • 

In type III, the tonal ( key) modulations of 

CF, and its respectively related CP, must be in one 

system of symmetric sequence. This sequence preserves 
CP ) its constant CF relation only when CP2 (the reply 

forms its P.A. in symmetric inversion to the original 

setting. Let us take the symmetry of '!m,. 

CP _ §. y For example: --- - -- • In order to CF c -
preserve the axial relation where CP is 3 semitones 

above CF, the reply must appear from the opposite 

equidista nt point, from a. This allows the 

relativ e stability of both parts, as CP, being three 

semitones abov e CF requires th e �-axis. 

The structure of such a fugue, evolved on 

four points of symmetry (tonics) , appears as follows: 

• ) 
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A similar case evolved from three points of 

symm.etry (3J2 ) , where §� = � , gives t he following 

sequence of- P.A. ' s: 

C 
a - a► 

+ - + 
c+e - -

-

aV+c - -

15. 

In type IV, in order to carry out the sequence 

of P.A. ' s  in symmetric inversion of the original setting, 

it often becomes necessary to  prepare two 'independent 

expositions: 

E = �:I and E' = �;��- , as CP may be 1n a 

different intervallic relation to CF2 than it is to  CF, • 

The difference usually appears in vari ations on semitone 

or whole tone, which results in most disturbing relations, 

such as a second instead of a thi rd. For this· reason, 

example in Fig. LVII offers t wo expositions. 

It is easy to  see the unfitness of CPI as a 

counterpoint to reply, by exchangi ng it with P.A. of CF. 

The sequence of symmetric P.A. • s• in type IV 

of Fig. LVII would develop on the basis of its pre-set 

expositi ons: 

E = CP1 
CF 

- and E• = 
CPII 
CF' 

• 

• 
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16. 

Consi dering the enharmonic equality of e4F 

and f, a:#f and bp e-tc. �  and the fac t that CF is evolv ed 

in natural major d0 and CF• in natural major <4 ,  we 

obtain the following structure for the fugue: 
• 

F ::  (CF + CP11)£. E + (CF + CP11)f. E 
CF 1 � ' I (CPr + CF , )!,if. a + (CF + CP11)t 

(CP1 t CF•)g_# 

' 
In  the old classical fugues reply appears on 

the dominant (i.e., seven semitones abov e or five semi

tones below the theme) . If there was a sequence of 

expositions before the interlude took place, the theme 

would usually have returned to the tonic . Acc ording to 

our type II, if CF , = C and CF a = t, CF3 should have been 

� 
CF'f should have been a etc . However, this was not the 

c ase in the fugues of the classical period, and there was a 

g ood reason for it. As the tQning of mean temperament 

(the two-coordinate system: ! and ! ) developed abberation, 

while deviati ng from the tuning center ( =· 1 ) ,  it  was not 

possible to get satisfactory intona ti on in the co urse of 

travelin g  throug h Cs or C-s- P.A.• s. And though equal 

temperament has overcome this defect, the habit remained 

with the c omposers till the end of XIX Century . 

• 

• 
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. Le s s on CLXVIII . 

,Prepareation ¢' �he Interlud e s • 

Inter ludes (I, , I2, • • •  Im) s erve as bridge s 

between the expos itions . The las t interlude, if the 

fugue end s  with one, i s  a pos tlu�� (coda) . Interludes 

s erve two purpos es :  

(1) to divert the lis tener • s  attenticn from the 

per s i s tence of theme; 

(2) to produc e a modulatory transition from one 

key-axis to another. 
• 

17 • 

The fir s t  form i s  confi ned to one key, but may 

have any number of s ucces s ive P.A. • s , thus produc ing 

modal modulations (U.-P.) between the two adjacent 

expositions having the s ame key-axis (U. -U. and U.-P. ) .  

The second form contains different key-�es (P.-U. and 

P.-P . )  and c onnects the two adjacent expos itions having 

different key-axes (P.-U. and P.-P. ). Both form s of 

interlude s may be either neutral or thematic. Neutral 
' 

interlude s are bas ed on the material of r hythm, or 

intonation, or both, not appeari ng i n  any of the 

expos ition. T hematic inter ludes borrow their material 

of rhytbm, or intonati on, or both from either CF or CP of 

the expos ition. Fur thermore, any of the above des cribed 

type s of interlude s can be executed either in general or in 

imitative counter point. 

• 



0 

0 



• 

• 

• • 

18. 

The dur ation of an interlude depends on the 

duration of the exposition and the quantity of interlude�. 

The form of an interlude itself has an influence upon its 

duration. In order to construc t a pe,rfect fugue, the 

duration of interludes must be put into some definite 

correspondence with the duration of expositions .. Assuming 

one exposition as a temporal unit, we arrive at the 

following fu ndam ental schemes for the temporal organization 

of interlu des: 

(1) T (E) = T (I) , i.e., the duration of � interlude 

equals to that of an exposition. This presupposes 

an equal duration for each of the- interludes; 

(2 ) T (E) ) T (I), i.e., the dur ation of an exposition 

is longer than that of an interlude. An exact 

ratio must be established in ea.ch case; 

(3) T (E) < T (I), i.e. , the duration of an interlude 

is longer than that of an exposition. An exact 

ratio must be established in each case . • 

(4) r-' = I,T + I
2

2T + 133T + . .• , i. e. ,  each successive 

in terlude becomes longer. The durations of 

consecutive interludes may evolve in any desirable 

type of progression (natural, arithmetic, geometric, 

involution, summation etc. ). The resulting effect 

of such fugue-structures is that the interludes in 

cour se of time, begin to dominate the theme. Thu s 

the persistence of the theme diminishes. 
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19. 

(5) P = I,nT + I
2

(n-l) T + I
8

(n-2) T + • • •  , i . e. ,  

each successive interlude becomes shorter. The 

resulting effect is opposite to that of . (4) : the 

domination of theme oVcer in terludes grows in the 

cours e of time. 

(6) r , i.e., the s equence of interlud& s o.evelops 

along some form of rhythmic grouping. • 

As convertibility and quadrant rotation are 

general properties , the same interlude may be used 

several times , during the cou rse of a fugtle. This, being 
• 

combined with key-transpositi ons, offers an enormou s 

variety of resources, at the same time cons erving the 

compos erts energy • 

Non-Modu lating Inte� ludes 

(Types I and II) 

Non-modulating interludes can be either neu tral 

or thematic and they can be evolved in general or imitative 

counterpoint. 

Figure LVIII, 

(1) An example of Interlude type II executed in general 

counterpoint. Non-th�matic (NeutraJ. ) .  

(2) An example of interlude type II executed in 

imitative counterpoint. This one i s thematic with 

reference to CF of Fig. LVII., 

(pleas e see next page) 
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(Fi g. LVIII) , 
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Modulating Interludes 

I. Modulating Counterpoint Evolved through Harmonic • 

Technique. 

Contrary to the general notion, J.S. Bac h ' s  

counterpoi nt is less "contrapuntal" than it is  believed 

to be. And especially so when it comes to tonal (key

to-key) modulations. It is  obv.ious that Bac h as well as 

many other important contrapunta1ists thoug ht of key-to

key transitions in  terms of modulating chords. See, for 

example, J.S. Bac h • s  W.T.c. , Vol. I, Fugue No. X (a two

part fugue) in E- minor. The harmonic background of 

this fugue is very distinct, and this fugue is rather 

typical and not excepti onal. 

• 
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.. 
It  is easy to convert any modu lating chord

progre.ssion wri tten in four-part harmony into two-part 

harmony. 

Chord structures of two-part harmony have the 

followi ng functions: 

(1) 8 (3) = 1, 3;  used instead of S (5) of the three-part 

structure; 

(2) 8 (5) = 1, 5;  used instead of S(5) of the three-part 

structure; 

(3) 8(7) = 1, 7; used ins tead of 8(7) of the four-part 

structure. 

Figur e LIX1 • 

s (,) s 

In order to obtain an in terlude from a four

pau-t chord-progression i t  is necessary to select the 

corresponding chor dal fu ncti ons which wou ld translate 

the four-part structures into. two-part structures. The 

voice-leading pertaining to two-part harmony will not 
• 

be discussed here, as any posi tion of two functions is 

equally as acceptable for the present purpose. Both 

parts are more or less i n  the vicinity of the four-part 

. 

. . . 

• 
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harmony range. The final step consists of developing 

melodio figurati on in both parts, but with somewhat 

contrasting rhythms of durations and attacks. 

22. 

Modulating interludes can be either neutral 

(general counterpoint) or thematic (imitative counter

point). In the latter case, thematic material is either 

borrowed from CF or CP of the expositions, or is enti�ely 

independent. 

Examples of Modulating Interlu�es 

r1gure LX. 

(1) Neutral and (2) Thematic. 
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An interlude can be � ed in the same fugue 

more than once, appearing i n  the different geometrical 

positi ons. It also can be t ransposed to any desirable 

key-axis, in any of the four quadrants. 

II. Modulating Counterpoint Evolved through Me lodic 

Technique. 

This new technique is bei ng offered in  order 

to enable the  composer to carry out the pure contrapuntal 

style, even when a key-t9- key transition is desi rable . 

Modulating counterpoint consists of two 

independently modulati ng melodies (see modulation in the 

Theory of Pit ch Scales), whose primary axes are in a 

c onstant simu_ltaneous relationship ax any given key-poi nt 

of the sequence. After t he vertical  dependence has been 

established (the harm onic interval between CP and CF), 

it becomes necessary to assign to the primary axis of CP 

the meaning of t he tonic which is near�st to CF through 

th� scale of key-signatures. 

Let the  exposition end in t he key of c, an d 

let CF end on c and CP end on a .  Then a becomes a - minor - - -
(as the key nearest to t he key of C t hru t he scale of 

key signatures; A- major would be far more rem ote). Thus 

we have established a constant dependence where CP is the 

minor key three semi tone.s below CF. 

The next step consists of planning the 

modulation of PI ( originally: CF). Let t he modulation be 
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to the key of f- minor • 

Then : 

IT = C + d + G + f  

Now we assume that i n  ord&r to retain the 

original vertical dependence between Pr and P11, each 

axis of a major key must be reciprocated by a minor key, 
• 

and vice versa. Then: 

pf 
II 

_ C + d + G 
a + F + e 

, i .e., while Pr modulates 

from Q to .5!, P11 modulates from .!. to E, ax:1d when PI 
modul� tes from A to Q, P11 modulate· s from E, to ,!:!; 

finally both parts arrive at CF havi ng an A►-axis and 

CP having an f-axis. 

The period of modulation from key to key in 

both parts is  approximateli the same. 

Examples of Modulati ng Interludes 

Figure LXI . 

(1) Neutral and (2) Thematic 
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25. 

The easiest way to a ompo.se modulating 

interludes by the contrapuntal technique is through a 

sequence of procedures: 

(1) PI modulates to the first intermediate key; 

(2) Prr n " " " " " 

(3) PI " fl second fl " 

(4) PII 
" " " " .fl 

and so on, until the entire modulation is completed • 

• • 

• 
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26. 

Lesson C;LXIX, 

Composition of the Fugue 

The process of assembling a fugue consists of 

planning the general sequence of expos itio ns, interludes, 

the ir geometrical positions and their primary axes (key-axes) . 

In the following group of fugues only such 

materia ls were used, wh ich were prepared in advance (see 

Fig. LVII, LVIII, LX and LXI). 

The f irst three fugues have interludes ( of both 

harmonic and melodic type), while the fourth has none, as 

key-variety is suf fic iently great without it. The last 
' 
\. 

fugue has indepe ndent counterpoints for the theme and the 

rep ly. The latter. �re interchanged in Es. 

The form of Fugue I (F.ig. LXII): 

E ,  (i) + It + E2 @ + Ea @  + Ia€)• + Ei# @@ + Ia G) + E.r@ 

The f orm of Fugue II (Fig.· LXII) :  

C • F 6 
E,@+ E2 @ + I, + E3 @ + Et1@ + E.r@)

©
+ 12 + E6 � 

The form of Fugue III (Fig. LXII): 
0 

AP 

The form of Fugue IV (Fig. LXII): 
0 

(E, + E2 + E3 + E'I + E_,)@ + E& @ + E7 @ + E8 G) 

Figure LXII. 

(please see following pages) 
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