MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

CULMINATING EXPERIENCE
FINAL DOCUMENTATION

M.M. (Music Technology Innovation)

Austin Har 763777

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

CONTENTS

* Introduction

* Description of my Culminating Experience Project
« Innovative Aspects of my Project

» New Skills Acquired

« Challenges, both anticipated and unexpected

« Future Ramifications and/or plans for my project

* Conclusion

» Footnotes

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

1. Introduction

“The enemy of art is the absence of limitations,” Orson Welles.

At Berklee, I found myself surrounded with performers, composers and technologists from around the world.
Each had their unique experiences and perspectives towards music, its cultural value and future trajectories
amidst new and groundbreaking technologies. It became clear to me that | wanted my Culminating Experience
to contribute to this creative zeitgeist by exploring the innovative possibilities of music technology as I became
aware of the importance of capturing and reliving our emotional journeys and inspirations. Thus, as I conversed
with my fellow colleagues, I was inspired by their abundance of creative energy and I wanted to create

something that would be beneficial to our artistic endeavors.

As I learned new software for my coursework, I began to ponder how the songwriting process had evolved over
time with new technologies. What tools did songwriters use to write music today? How did they transfer ideas
and files from one place to another? How do we capture that moment of inspiration that would eventually lead
to the creation of a work of art? These were the questions that I found myself seeking the answers to as |
conceptualized my project. Throughout my investigation, I found room for innovation and meaningful

contribution to the field of music technology in the project that I decided to commit my efforts to.

2. Description of Culminating Experience

“For creativity on the go, capture your inspiration with FLO.”

‘FLO’ is an 10S app for the everyday songwriter who needs a simple interface for organizing their daily
creativity and capturing that moment of inspiration. Professional and amateur songwriters, composers and
music creators will be able to use ‘FLO’ on their iPhone or iPad to record, store and transfer their everyday
ideas online as MIDI files. Whether you are taking a stroll in the park or sitting at home watching TV,

songwriters can capture their moment of inspiration and transfer it online for further development.

3

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

(Working logo for ‘FLO”)

‘FLO’ contains 3 essential tools for capturing your ideas:
1. Drum machine
2. Synthesizer

3. Recorder (via the iPhone / iPad microphone)

These three features were designed with the utmost consideration for the modern songwriter’s needs and

intuitions during their creative process. The various capabilities of each feature are listed below:

1. Drum Machine: - 32 step drum sequencer for kick, snare, hi hat and other samples.
- Beat quantization patch to the nearest 8" note value for real time recordings.
- MIDI export and online upload onto Parse server for further development on

other DAWSs such as Ableton and Pro Tools.

2. Synthesizer: - Integration into Pure Data patch for real time synthesis.

- Beat quantization patch to the nearest 8" note value for real time recordings.

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

- MIDI export and online upload onto Parse server for further development on

other DAWSs such as Ableton and Pro Tools.

3. Recorder: - Integration into Pure Data patch for Audio to MIDI conversion.

- MIDI export and online upload onto Parse server for further development on

other DAWSs such as Ableton and Pro Tools.

UI Design

The UI design of ‘FLO’ began from early prototypes in MAX MSP. As I prototyped the final designs with the
standard Xcode storyboard, I discovered a very useful OSX application called ‘PaintCode’.

Group

Name: Group
I X
H+, :
i
Opacity: -~ m

slending: [T
G Nocip 3]

S ELLTE No Shadow v

//// Color Declarations
colorl UIColors colorl = [UIColor colorWithRed: 0.696 green: 0.077 blue: 0.135 alpha: 1];
UIColorx color3 [UIColor colorWithRed: ©0.987 green: 0.134 blue: 0.222 alpha: 1];
color3 UIColorx color4 [UIColor colorWithRed: @.756 green: ©.756 blue: 0.756 alpha: 1];
lord UIColorx color5 [UIColor colorWithRed: 0.936 green: ©.936 blue: ©.936 alpha: 1];
Co UIColorx color@ [UIColor colorWithRed: @.151 green: ©.151 blue: ©.151 alpha: 1];
colors UIColork color2 = [UIColor colorWithRed: ©.489 green: © blue: 0.029 alpha: 1];

(My drum icon design in ‘PaintCode”)

‘PaintCode’ is a powerful application that allows users to create intricate icons, buttons or interfaces, or

alternatively to import svg and Photoshop files, that are automatically converted into usable Objective C code.

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

By drawing the icons, buttons and UI as Objective C code, rather than using conventional .png files, this saves

a significant amount of storage space in the app.

Programming Languages Used

For the significant programming portion of the app, I used three primary languages:

1. MAX MSP: - Object oriented music technology programming language.

- Original working prototypes of calendar and diary storage functions.

® Max File Edit View Object Arrange Options Debug Window Extras Help - . @ N3 @ O 3 B4 2% satlo51PM Q E
. i

1 s Ci ienceAustin | [Interface]
| Spoken word narration - option to tum .
[Caleq on/ of (Fate ou) head- o easr
CULMINATING EXPERIENCE ‘
Relive’ button goes to video y
take pictures
-4 | T write about it
by | ®006 [Diary] p
| 01/01/2013 i | Explorer | Insy Reference | Max
sier way to \ Audio i Video i Photo
25t 2 digits of Dear Diary, |] ! show () (Ul Objects (Max (MSP’ (Jitter
dect i - Patchers ¥
7 = Today | went to the beach. It was a sunny day and the water was cold Insert audio, video and image files to store into playlists.
-~ Category (¥ 1009ktems (Q- Fiter
clear
filedate - Report the modification date of a file
- filein - Read and access a file of binary data
2 filepath - Manage and report on the Max search p...
filewateh - Watch a file for changes

folder - List the files in a folder
fontlist - List system fonts

TErEEC

Draw and record your own pictures and sounds.

0 e [
| | Witeyour diaryentry |

i
betwi [Sunset - by Austin Har

onecopy - Prevent multiple copies of the same pat...

‘opendialog - Open a dialog to ask for a file or folder

relativepath - Convert an absolute to a relative path

== 20 then bang savedialog - Open a dialog asking for a filename

EEEEREEEERERERE

in |Starlight illusion
Paperback diary -
Oh baby, my sunkissed nymph Scroll through your photos

strippath - Separate filename from a full pathname

200's Daydream of a summer memory Y Images (5)
See what you mean to me [&] fpic - Display a picture from a graphics file
Ocean sunsets and caffé mocha
1am a romance tragedy [- Play a movie in a patcher window
baf |We are a moondance fantasy " ” "
e Lifo s a rystery that we should meet 0 jsui - Create user interfaces with Javascript
g L Two fireflies caught in the wind led - Draw graphics in a patcher window
« to separate whole “~— |Light our trails to where we begin o
sgers from 11l find you and you'll find me [&] playbar - Movie/SoundFiles controller
That's how it could be. v Interaction (7)
[2] dialog - Open a dialog box for text entry
list of all 24 : [5] key - Report keyboard presses
lues for $i2 which Write your daily poem Preview your videos .
15 0f 4 (i.e. 00 to 96) = : = [E] keyup - Report key information on release 1
[5] modifiers - Report modifier key presses
0 1 /O 1 /2 O 1 3 [5] mousefilter - Gate messages with the mouse
stg)| [i] mousestate - Report the mouse information
capture [2] numkey - Interpret numbers typed on the keyboard
- i jsui
match | (spray .
De ar D 1a Provides an environment to make user interface elements
) using Javascript. This provides all of the programming tools
_ -4 = av: in-the js object. but also exnoses the maraphics.

Bt - Lo B " e =

(Early diary interface prototype)

MM (MTI) Berklee College of Music:

2. Pure Data:

Final Documentation

Austin Har 763777

[317172013 (Saturday)
Dear Diary,

Today | went to the beach. It was very wam and windy.

ElE

Photo ‘

Insert audio, video and image files to store into playiists.

LoD

Draw and record your own pictures and sounds.

dlear

Soft and tingling
My fingers caress your hair
|Akaléidoscope of optic fibers
Send shackwaves through this lovestruck debonnaire
Like a hardwired sunset addict
I'seek only a romantic lfe with you
Blissfully lost in this universe of heightened senses
irawn to your alluring scent
You are my cherie amour
A summar iy tnatbossoms ke a never.ending veivet cream
Loving il your delcae feaurs
embracing ina siow dance
Siondr and sensual
My fingers kiss your paim
Tracing our future together.

Wite your daily poem

Preview your videos

Mood Questions.
1. Happy - Sad

12345

2. Energetic - Tired

3
4.

4|
4|

5. Calm - Angry.

(Early diary interface prototype)

- Object oriented music technology programming language with i0OS function.

- Drum machine, BPM, Audio to MIDI converter, Beat Quantization,

Synthesizer, MIDI file making and Xcode Control patches.

d_File Edit Put Find Media Window

Help

[AE] © O % B o 100G Mon9:2s M CESIN

subpatch_sequencer.

KT

ezl

i

Ty |

If selected then trigger sample

[Fetsel 123

-

i
E...
P S— 3
< Wakee] . [
Type in desirec IP address to connect to B
I B
[4

Kyk sequence

Qaoeewaoeiuaoieueweeueneeiene[
132

PR R R

(Drum machine patch)

My Drum Machine patch features a 32-step drum sequencer, which receives a message of ‘1’ or ‘0’ for each

designated kick, snare or hi hat selection. The patch receives the BPM float designated by the user. Listening to

the click track, the user records their drum sequence and is able to save, playback and export it as a MIDI file.

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

g‘i‘m K
Sel T oute /startolick /recordhIDl]
= —7

x stopclick S— o
) N ka
nnnnnn 50 O [— ‘ _ﬁ
@] @) 2 N
1 ‘.‘ < B 3 o
bbbl 128 default tempo N
B se e

:
5 o i
 hihatt E

crotehets S timecrotchet

clicktrack
I kickt

[oadoang Only spit out these nunbers!!!

S drunstart

< 750 then 1, 758 the
hip

\Hﬁ?

Last beat is length of beat 1 x 8

drunstart r drunstart

(BPM patch)

My BPM patch converts the designated BPM into milliseconds for the real time beat quantization with the click
track and 32-step drum machine grid. This patch and its corresponding click track are crucial to the user’s

recording process, whether that be with the drum machine, synthesizer or recorder.

rrrrrr e
o
1 g
el 1] =
d
T 1
pitchvalue L o2
vl
%
i =
gas
o) LA B R
oo o e o
L) P T L CEEIT O D
B 35 24 25 be 21 28 o 30 3458
{ ot ot
[hesage |
o 5 e S 91 Vi 3 S s
Sig 1520 58 528 524,325 526 7 6 5% S5
i I ——r et S92 53 9% 55 % 57 58 99 10§11 912 953 0 35 956
=t BN EpEE NS 557 518315 520 321522 523 32¢ 525 526 827 528 529 $30 531
5 2
EEL A EE STE EOE S 0E TR
REHEEE Figure out correct method for setting MIDE sequence
MMMMM
N oo e e e A D DL R I B L

(Audio to MIDI converter patch)

My Audio to MIDI converter patch is perhaps the most ambitious one I programmed in Pure Data. It utilizes the
‘fiddle’ object to analyze incoming audio data into frequencies and MIDI pitch values. Using an amplitude
filter (to cancel background ambience) and the ‘timer’ object, I was able to deduce the duration of each

incoming note. The patch converts an audio recording of a guitar melody of up to 32 distinct notes, where the

8

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

user is then able to save, playback and export it as a MIDI file.

uuuuuuuuuuuuuu

z

1

s

7
i I e
3 g

2 3,4,5, 6,7, 8th eto sen
g tinequaver
v _
seltz s 114 sells e
%% [alis\sNe!
Tiner] | Tinbr) \ S Tiwer X
B g g
- T[4 3
= = = = T H z a4
———— 7 3 o ‘
g

r

eat lengt)

—_—]]
= = S

(Beat Quantization patch)

My Beat Quantization patch receives the millisecond duration of each ‘beat’ from the BPM patch, which allows
it to quantize real time inputs to the nearest 8" note. Using the ‘timer’ and ‘&&” objects, the logic behind my
beat quantization patch lies in dividing each beat duration in half and then filtering those inputs which are less
than half a beat early or late to the nearest beat value. The quantization is visible in the resulting Drum Machine

patch where the quantized beats are marked as selected toggles.

e
7T
=
= [
& 7
not gfsinantii/stops
4 € chromatic scale 1 octa / 7
=1 97 119 115 191 199 102 116 183 301 164117 106 107
B ——
L7

oGz ‘I‘ ,.l][b/} o
ivvg """-'f’%"""’nllill/,[/jlmlli’ s
S R A~
4’%, v l 'i,i/;"‘/lill" i b
L%
ay

A y

/
/I , 11!

/ I/ 4

(Synthesizer patch)

9

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

My Synthesizer patch allows the user to select a sine, square or triangle wave (or various combinations of the
three). The original prototype utilized the ‘keyin’ object, which tracked the user’s ‘keydown’ events from the
letters A to K (representing an octave from C). The final synthesizer patch receives messages from the Xcode
storyboard corresponding to a frequency to MIDI key, which in turn triggers the corresponding pitch selected
from the original system. The user is then able to save, playback and export it as a MIDI file.

2: start recording
pitchvalue

Smbol L

hotein
2005 I
g

savepanel 3: input MIDI os lists

® set $1.nid

ol

Tetro 2

valug EB‘
5 ot 2y print notes

controller

channel B

ticks per quarter note

cks per quarter note

nessage

verbosity defaults to 1
B set to 3 to debug input

verbose $1

midifile
=TT

(MIDI file making patch)

The ‘midifile’ object is a crucial part of my app’s functionality. This is the patch that collects all the MIDI pitch
and duration data from the drum machine, synthesizer and recorder, and then compiles it into a .mid file.
‘Midifile’ is a Pure Data external which required a very extensive implementation and compilation process. I

modified this patch to automatically update the user id of each MIDI recording.

10

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

Receiving from Xeode
Toggle to start/stop record audio

x, timecrotchet Togale to turn on/off synth

Type BPH in Xcode Toggle to turn on/off drum
I click¥code =\E‘

r timebart| X timebar2

r bpn daudiox

I e £ KickXcode| [r snare¥code| hihaticods| - TSCOriOUdioX] x synthon peciiumar
5 s\startclick

1 z
Crobphet, quaver or semi
s bpn E(E V s recordaudiox| s synthon s drunor
s kickt| s snaret s hihatt
=\ choosequant ize L
3 ways of rechrding MIDI: 1 AudPgois MEDFtaEkst: ithp record drum MIDI

Synthesizer 3 prum Machine
r cleardrumsk| v ¢learMIDIX

%%ﬂy;

s cleardruns

I recordMIDIX| r synthMIDIX r, drusIDIX

clearMIDI| s régordtIDI s synthMIDIX S drunMIDIX = .
{irpeach/nidifile

x saveMIDIXcode Keodedrunp Layback

sel @ midifile pd subpateh_recorc

5 saveMIDI

5 drunplayback. declare -stdpath /Library/Pd/nidifile_files

Sending to Xcode

Send saved MIDI file to Xcode for upload onto Parse or
Dropbox. Will need to unpack list of saved MIDI files to
choose which to send

declare -stdpath /Library/Pd/midifilefiles

Receiving frequency value (float) from ¥co

I synthhIDI

S sendMIDIX| s sendsynthMIDIX| |3 senddrumMIDIX

Trigger bang bane From

Convert into MI file already in FD

st

;et write $1.mid s pitchvalue

I audioMIDI| r synthMIDI

(Xcode Control patch)

My Xcode Control patch is the main patch for receiving and sending data between Pure Data and Xcode via the
libpd library. Floats, messages and symbols are transferred here to other Pure Data patches such as the Drum
Machine and Synthesizer, whilst the *.mid’ file compiled in the ‘midifile’ patch is sent to Xcode to be saved in
the app’s document’s directory folder and also uploaded online via the Parse server API.

3. Objective C: - C based programming language in Xcode used for iOS development
- Drum Machine, Synthesizer, Recorder, PaintCode UI, Document’s Directory,

libpd library, .plist resource and Parse API.

B QAQ=m®»8

¥ I PaintCode
+] AustinHarApp29.6.pd
11| AppDelegate.h
|| MIDIdata.plist
v [Classes
v Views
|1 ButtonView.h
L ButtonView.m
|11, ProgressView.h
i ProgressView.m
i) Bezie

lew.h
m BezierView.m
¥ | Resources
v lImages
¥ App Images
«| Default.png
< Default@2x.png
) Default-568h@2x.png
¥ | Tab Bar Images
| drumicon.png
) Bezier_Tablcon.png
| Bezier_Tablcon@2x.png
«| Button_Tablcon.png
] Button_Tablcon@2x.png
«| Progress_Tablcon.png
<] Progress_Tablcon@2x.png
v Storyboards
[E MainStoryboard.storyboard
¥ Supporting Files
| InfoPlist.strings
) main.m
| PaintCode-Info.plist
i PaintCode-Prefix.pch
¥ View Controllers
i BezierViewController.h
| BezierViewController.m
i) ButtonViewController.h

< > | [} PaintCode) [PaintCode) m AppDelegate.m) [-copyPlist
77
2 // AppDelegate.m
3 // PaintCode
/1
5 // Created by Felipe on 5/21/13.
6 // Copyright (c) 2013 Felipe Laso Marsetti. All rights reserved.

71

9 #import "AppDelegate.h”
10 #import <Parse/Parse.h>

12 @inplementation AppDelegate

14 - (BOOL)application: (UTApplication *)application didFinishLaunchingWithOptions:(NSDictionary %)launchOptions
{

16 // Override point for customization after application launch.

7 [Parse setApplicationId:@"3EzRm05xmsUONDUQWMYhx jo8e38102kdiD2rInFK"
clientKey:@"UEHREPASLYUT6UIMZpXjVRpXWmrq2Rx0rKe32ayF"] ;

[PFAnalytics trackAppOpenedWithLaunchOptions: launchOptions];

2 [self copyPlistl;
» return YES;

2 - (void) copyPlist {

NSError *error;

NSArray *paths = NSSearchPathForDirectoriesInDonains (NSDocumentDirectory, NSUserDomainMMask, YES);
NSString *documentsDirectory = [paths objectAtIndex:@];

NSString *path = tr ingPathComponent:@"MIDIdata.plist"];
NSFileManager xfileManager = [NSFileManager defaultManager];

3 if (![fileManager fileExistsAtPath:path]) {

3 NSLog(@"copying database to users documents");

37 NSString xpathToSettingsInBundle = [[NSBundle mainBundle] pathForResource:@'MIDIdata" ofType:@"plist"l;
38 [fileManager copyItemAtPath:pathToSettingsInBundle toPath:path error:&error];

39 ¥

40 else {

o NSLog(@"users database already configured");

@ 3

w5}

6

& ®» m 2 L 2| |NosSeletion

2014-06-30 10:21:06.564 PaintCode[54642:a0b] users database
already configured

(App Delegate .m file)
11

MM (MTI) Berklee College of Music: Final Documentation

Austin Har 763777

® 00 1 PaintCode.xcodeproj — Lii ButtonView.m
P B | PaintCode) (i iPhone Retina (3.5-inch) Running PaintCode on iPhone Retina (3.5-inch) g
mTQAe=Em=8 « > | I PaintCode) PaintCode) | Classes) | | Views) ,i ButtonView.m » (] -drawRect: i
L = PaimtCode o CoRect eqRect = CGRecthake(167, 160, 15, 17
B e 05 sk 7.0 w fcolor13 setFil
A @1 feacontent Sraviniect: egRect withfont: (Utfont @ " sizer 141
> (5 Parse.framework gnnent: NSTextAL enter];
v PaintCode @
>
| AR 484 //// Qva\ 23 Drawing
| AppDelegate.m 85 oval23Path = [UIBezierP: InRect: CGRectMake(174, 358, 10, 13)];
| MiDIdata plist 06 [color13 setFilll;
v B w87 [oval23path fill];
 Classes pod
v 9
w0 FrObject testobject = [PFGbject objectitnClassilasese Testobject);
91 testObject[@"lol"] = @"ba
i TestObject saveInsackgroundl;
s
e
5 tiserror serror;
496 NSArray xpatl) YES); //1
b P w0 NsString mcumemsmrectury = [pths objectatndexcal; /72
a] NSString spath = tory st'l; /73
¥ Resources o
 Images 500 NSFileManager *fileManager = [NSFileManager defaultManager];
Lol e 1f (1[FileManager fileExistsAtPath: path]) //4
|« Default.png 503

|] Defautt@2x.png
|] Default-568h@2x.png
v Tab Bar Images
drumicon.png
Bezier_Tabicon.png
ezier_Tablcon@2x.png

D Progress_Tablcon@2x.png
[Storyboards
' Mainstoryboard.storyboard
¥ supporting Files
 InfoPliststrings
=+ main.m
_ PaintCode-Info.plist
i PaintCode-Prefix.pch
v View Controllers

i BezierViewController.h

NSString #bundle = [[NSBundle mainBundle] pathForResource:@"MIDIdata" ofType:e'plist"l; //5

[ileManager copyItemAtPathbundle toPath: path error:gerrorl; //6

tionary =1 ionary alloc] initWitnContentsOfFile: pathl;

{/1osd fron savedstock exanple int value

int vi
il Fsavedstock objectrorkey:evalue®] intvaluel;
NStHutableDictionary #data = [[NSHutableDictionary alloc] initWithContentsOfFile: pathl;

//here add elenents to data file and write data to file
77int valve = 5

[data setObject: [NSNunber numberWithInt:value] forkey:e'value"l;

[data writeToFile: path atomically:YESl;

PaintCode

2014-06-26 17:01:15.786 PaintCode[42950:20b] users database
already configured

(Document’s Directory initialization code)

The Parse API and Document’s Directory initialization code is called with the first method ‘drawRect’, along

with the Ul code from PaintCode. The NSBundle object allocates memory space for the MIDI data created in

‘FLO’ via the Pure Data ‘midifile’ object that is connected to Xcode through the libpd library. This data is then

stored into the app’s document’s directory folder and uploaded into the Parse server via the PFObject function.

. Parse.framework
| Headers
[

11| PF_EGORefres...leHeaderView.h

i, PF_MBProgressHUD.h
i PF_Twitter.h

i PFACL.h

| PFAnalytics.h

. PFAnonymousUtils.h
1 PFCloud.h

il PFConstants.h

1 PFFacebookuUtils.h
1 PFFile.h

| PFGeoPoint.h

11| PFmageView.h

i PFnstallation.h

i PFLogInView.h

11| PFLogInViewController.h
1 PFObject.h

11| PFObject+Subclass.h
i PFProduct.h

11| PFProductTableViewController.h

1| PFPurchase.h

| 11| PFPurchaseTableViewCell.h

h| PFPush.h
i PFQuery.h

| PFQueryTableViewController.h

£ PFRelation.h
1 PFRole.h
| PFSignUpView.h

11| PFSignUpViewController.h

i PFSubclassing.h

The Parse framework is imported into the relevant ‘h’ and ‘m’ files of the various views so that the MIDI data

created in each of the functions (drum machine, synthesizer and recorder) will be able to be uploaded directly

onto the server (as seen below).

3/ varse
s/

s // Created by Ilya Sukhar on 9/29/11.

6 // Copyright 2011 Parse, Inc. ALl rights reserved.
7/

8

9 #import <Foundation/Foundation.h>

10 #import "PFACL.h"

11 #import "PFAnalytics.h"

12 #import "PFAnonymousUtils.h"

13 #import "PFCloud.h"

14 #import "PFConstants.h"

15 #import "PFFile.h"

16 #import "PFGeoPoint.h"

17 #import "PFObject.h”

18 #import "PFQuery.h"

19 #import “PFRelation.h"

20 #import "PFRole.h"

21 #import "PFSubclassing.h"

22 #import "PFUser.h"

23

u #lf PARSE_IOS_ONLY

5 FImageView. h

26 #import "PFInstallation.h"

27 #import "PFLogInViewController.h"

28 #import "PFProduct.h"

29 #import "PFProductTableViewController.h"
30 #import “PFPurchase.h"

31 #import "PFPush.h"

32 #import "PFQueryTableViewController.h"
33 #import "PFSignUpViewController.h"

34 #import "PFTableViewCell.h"

35 #import "PFTwitterUtils.h"

36

37 #if defined(__has_include)

38 #if __has_include(<FacebookSDK/FacebookSDK. h>)
39 #import <FacebookSDK/FacebookSDK. h>

40 #import "PFFacebookUtils.h"

u o #else

4 #define PFFacebookUtils Please_add_the_Facebook_SDK_to_your_project
43 #endif

u #endif

45

46 #endif

“

(Parse API Framework)

12

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

Parse

Dashboard Quickstart Tutorials Documentation Downloads Help Pricing Products

Analytics Cloud Code

Q ‘Welcome Austin Har

=a | FLO v Push Notifications Settings
Classes + Row + Col More ~ | (Y 12
TestObject [31)] O |objectld sti... |foo string lol string createdAt Date ~ | updatedAt pate ACL AcL
) 6TSNdpwJE bar Jun 26,2014, 04:41 Jun 26,2014, 04:41
(® New Class
() HeHDXXBMY bar Jun 26,2014, 04:41 Jun 26,2014, 04:41
@® Import | 290fmamWGK bar Jun 26, 2014, 04:40 Jun 26,2014, 04:40
) VB2oXnupAr bar Jun 26, 2014, 04:40 Jun 26,2014, 04:40
] cX6ZWWISD bar Jun 26,2014, 04:39 Jun 26,2014, 04:39
) CbaleBelt bar Jun 26,2014, 04:39 Jun 26,2014, 04:39
O] WrOwgeCT — bar Jun 26,2014, 04:39 Jun 26,2014, 04:39
) 4OAEQTOGf bar Jun 26,2014, 04:39 Jun 26,2014, 04:39
O (MWGYm3cGZ bar Jun26,2014,04:39 Jun 26,2014, 04:39
(Parse server database log)
v [E Button View Controller - First Scene Tab Bar Item
v) Button View Controller - First Badge
> View Identifier | Custom
[] Tab Bar ltem - Drum Machine Title | Default Position
@ First Responder]
Exit Bar Item
> [E Progress View Controller - Second Scene| - Title | Drum Machine
ab Bar Controller Scene = image |drumicon.png
= Tag
» [Bezier View Controller - Bezier S«
zier View Controller - Bezier Scene _ _ e
s~
2 3 2
o Do =
View Controller - A contr
= supports the fundamental v
management model in iPhol
@ | Table View Controller -
\) controller that manages a tz
51 ® um 2 & £ |4 |NosSelecton
17:01:15.786 PaintC 1 users database -
already configured " Collection View Contrall
~5- controller that manages a ct
view.

(10S Storyboard)

As T used ‘PaintCode’ for a code generated Ul on each of these view controllers, I placed a ‘View’ object on
each of the view controllers to receive and send events from the 10S screen. Essentially, the ‘View’ object acts

as a screen for the ‘PaintCode’ Ul to be displayed.

13

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

3. Innovative Aspects of the Work

‘FLO’ is innovative and differs in comparison to successful apps such as 'Day One', 'Live Journal' and
‘Evernote’ (note taking apps), Native Instruments ‘iMaschine’ and Propellerhead ‘Figure’ (beat making apps)

in three fundamental aspects:

1. Template for music creation, storage and transfer: ‘FLO’ offers a music specific template for not
only creating, but also storing and transferring ideas for further development on common DAWs such as
Ableton or Pro Tools. Current beat making apps function by having the entire track produced on the app
itself, then exporting it as a single bounced audio file. This only allows very limited options for further

development on professional DAWSs, whereas the MIDI capability of ‘FLO’ is a significant advantage

for further creative development.

2. Audio to MIDI conversion: ‘FLO’ features a highly appealing Audio to MIDI conversion feature,
which is not currently found in major music apps (and those which attempted it have received largely
negative reviews). ‘MIDIMorphosis’ is by far the best-received i0S MIDI conversion app but is made

specifically for guitar and bass only.

14

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

MIDImorphosis - Polyphonic Audio to MIDI Conversion ¢ ¢ > UEvETopE
By Secret Base Design

Open iTunes to buy and download apps.

Description

MIDImorphosis - Polyphonic Audio to MIDI Conversion Support » More

What's New in Version 2.1

or later. Com

Customer Ratings

Current Version
J k% k% 7 Ratings

(MIDImorphosis on the App Store)

A raw guitar sound is a much purer tone than a human voice, thus there are significantly fewer pitch
frequencies for the app to analyze. Furthermore, there are technological considerations regarding monophonic,
homophonic and polyphonic analysis; the latter of which is also significantly easier with a pure tone such as
guitar or bass. Whilst software such as Celemony’s Melodyne and Neptune’s Autotune are able to do Audio to
MIDI conversion well, it is difficult to replicate their success on an 10S app due to the complexity of this

technology and the audio quality of the iPhone and iPad microphone for recording raw sounds.

(Celemony Melodyne’s pitch correction feature)

15

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

o] o
- | (] pome]
s

| smow hosnamEn

~) swow mns 63 maonTrx

(Neptune Autotune’s pitch correction feature)

Audio to MIDI conversion involves complex amplitude and spectral analysis of frequency data from an audio
source in order to determine a note’s pitch, length and velocity. These processes require not only audio
processing and mathematical operations, but also file management, storage and transfer, which require the
combination of several programming languages. With ‘FLO’, | was required to implement Pure Data, Objective
C and C++, along with their corresponding object libraries and foundations, libpd for Pure Data, Parse

Foundation and AV Foundation for Xcode.

As of today, ‘FLO’ is able to replicate the efficiency of Audio to MIDI conversion with as much success as
‘MIDIMorphosis’ on guitar for its monophonic capabilities. As ‘FLO’ is predominantly designed for quick

‘MIDI note taking’, homophonic and polyphonic capabilities were not my top priority.

3. MIDI note taking: Unlike ‘iMaschine’ and ‘Figure’ which only transfer audio files via USB, ‘FLO’
can transfer MIDI files of beats and melodies as well audio recordings and photos online via the Parse
API. MIDI files are superior to audio files in terms of size, transfer speed and flexibility for

manipulation.

116 116T 1/32

(Native Instrument iMaschine’s Ul design)

16

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

REC » ETREITR REC orum | Bass | LEAD
L] L]

&
g
O®Q -

SONG
O e

(Propellerhead Figure’s UI design)

Based on my research with Berklee business majors Carl and Tanya into competing apps, we found few

songwriting apps that compete with ‘FLO’s ‘MIDI note taking” and Audio to MIDI conversion features.

Q7

How important is it for you to have audio &
midi files for composition?

Answered: 33 Skipped: 0

Very Important

I don't really
care about it

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Answer Choices Responses

Very Important 57.58% 19

I don't really care about it 42.42% 14

Total

(Survey for ‘FLO”)

The survey that I conducted with my business partners confirmed the demand for these innovative features that

‘FLO’ offered. As seen in the survey responses, creating and sharing MIDI files proved to be a major aspect of

compositional and collaboration process for modern day songwriters.

17

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

How do you collaborate with other
songwriters/musicians?

wwwwwwwww

(Survey for ‘FLO”)

4. New SKkills Acquired

I acquired many new skills for my Culminating Experience project. I had no programming experience prior to

my studies at Berklee and I was required to learn several languages in order to program my i1OS app:

1. MAX MSP
2. Pure Data
3. Objective C

It is also worth mentioning the different capacities in which I used these programming languages. Not only did
I grow familiar with these programming languages, I also developed the fundamental skills and problem

solving logic for conceptualizing, designing and executing an original 10S application from scratch:

1. Implementation of Parse API into Objective C
Beat Quantization logic

Audio to MIDI conversion logic

Real time synthesis

Implementation of external objects and libraries (‘midifile’ object and ‘libpd’ library)

A T

Communication between several programming languages, object libraries, frameworks and servers

18

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

Asides from the new skills I gained in programming, I also gained new skills with software such as Ableton
(which I had no prior experience), that provided the initial inspiration for ‘FLO’s MIDI note-taking function.
Other skills included:

1. Independent research through online forums and tutorials
Time management skills

Presentation skills

A

Collaboration skills

5. Challenges Encountered

As my Culminating Experience project involved the extensive use of programming languages, which I had no
prior experience with before coming to Berklee, I faced many challenges throughout the entire process. During
the initial conceptualization stages, the biggest challenge I faced was the need to be innovative. This challenge
was especially difficult given the many new and innovative technologies emerging for iOS applications today.
With guidance from my program director Stephen Webber, advisor Ben Hogue and visiting professors David
Mash and Richard Boulanger, I was able to incorporate the defining characteristics of an innovative product

into my final app.

Upon reaching a focused objective for my project, the process was then complicated by our substantial
coursework and my limited programming skills. Throughout the entire execution process, the steep learning
curve required for improving one’s programming skills became evident and I revised my earlier ambitious
vision for more specific weekly goals given the short timeline. As I developed my skills, I was then able to

develop a more realistic vision for my final application.

6. Future Ramifications for the Project

In our modern digital information age, recording personal experiences and sharing them with the world via

social networking is increasingly expected of us. ‘FLO’ has the potential to contribute to this 21* century

19

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

zeitgeist by allowing creative content to be recorded, stored and transferred as MIDI files online. This would
open new and exciting doors for creative collaborations between ‘FLO’ users as their ideas could potentially be
integrated as a feature on social networking platforms such as Facebook or Twitter via integrating the relevant

API into its code.

As indicated in my survey, the majority of musicians collaborate with each other via sharing files such as MIDI,
audio samples and text. This shows the potential for ‘FLO’ to blossom into a larger scale project with a team of
programmers and established business partners (i.e. Ableton, Pro Tools, Facebook) to develop a useful and
innovative format for everyday users to share their musical notes online. Furthermore, visiting artists such as DJ

Guru stated that a MIDI note-taking 10S application could become the ‘standard’ for capturing musical ideas.

7. Conclusion

In summary, ‘FLO’ is designed to provide the utmost speed and efficiency in capturing the basic essential
details of a songwriter’s daily inspirations. Through its 3 features, ‘FLO’ allows users to quickly record, store
and transfer musical ideas as MIDI files onto DAWSs, such as Ableton and Pro Tools, for further development
through the Parse server API. From here, users can import that MIDI data onto their computer to start or

continue working on a bigger project such as a musical composition or track.

Creating ‘FLO’ was a very challenging and fulfilling experience for me. Not only did I acquire a varied range
of new skills, I was also able to open my mind to different perspectives of music technology as a developer and
user. This was a new and ambitious project for me and I am thankful for all the inspiration and guidance that I

received during my studies at Berklee.

20

MM (MTI) Berklee College of Music: Final Documentation Austin Har 763777

7. Footnotes

The following are the main sources from which I developed my programming skills, along with consultations

from my supervisor Ben Hogue:

Peter Brinkmann, 2012. Real-Time Audio Synthesis on Android and iOS.: Making Musical Apps. O-Reilly
Media Inc.

www.stackoverflow.com (online question and answer forum for programmers)

www.lynda.com

www.youtube.com

http://ipgames.wordpress.com/tutorials/writeread-data-to-plist-file/

http://www.raywenderlich.com/36341/paintcode-tutorial-dynamic-buttons

https://developer.apple.com/

https://www.parse.com/

http://en.flossmanuals.net/csound/e-csound-in-ios/

https://github.com/libpd/pd-for-ios/wiki/ios

21

